986 resultados para Planets and satellites: gaseous planets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have discovered using Pan-STARRS1 an extremely red late-L dwarf, which has (J - K)(MKO) = 2.78 and (J - K) (2MASS) = 2.84, making it the reddest known field dwarf and second only to 2MASS J1207-39b among substellar companions. Near-IR spectroscopy shows a spectral type of L7 +/- 1 and reveals a triangular H-band continuum and weak alkali (K I and Na I) lines, hallmarks of low surface gravity. Near-IR astrometry from the Hawaii Infrared Parallax Program gives a distance of 24.6 +/- 1.4 pc and indicates a much fainter J-band absolute magnitude than field L dwarfs. The position and kinematics of PSO J318.5-22 point to membership in the beta Pic moving group. Evolutionary models give a temperature of 1160(-40)(+30) K and a mass of 6.5(-1.0)(+1.3) M-Jup, making PSO J318.5-22 one of the lowest mass free-floating objects in the solar neighborhood. This object adds to the growing list of low-gravity field L dwarfs and is the first to be strongly deficient in methane relative to its estimated temperature. Comparing their spectra suggests that young L dwarfs with similar ages and temperatures can have different spectral signatures of youth. For the two objects with well constrained ages (PSO J318.5-22 and 2MASS J0355+11), we find their temperatures are approximate to 400 K cooler than field objects of similar spectral type but their luminosities are similar, i.e., these young L dwarfs are very red and unusually cool but not "underluminous." Altogether, PSO J318.5-22 is the first free-floating object with the colors, magnitudes, spectrum, luminosity, and mass that overlap the young dusty planets around HR 8799 and 2MASS J1207-39

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In stable solar systems, planets remain in nearly elliptical orbits around their stars. Over longer timescales, however, their orbital shapes and sizes change due to mutual gravitational perturbations. Orbits of satellites around a planet vary for the same reason. Because of their interactions, the orbits of planets and satellites today are different from what they were earlier. In order to determine their original orbits, which are critical constraints on formation theories, it is crucial to understand how orbits evolve over the age of the Solar System. Depending on their timescale, we classify orbital interactions as either short-term (orbital resonances) or long-term (secular evolution). My work involves examples of both interaction types. Resonant history of the small Neptunian satellites In satellite systems, tidal migration brings satellite orbits in and out of resonances. During a resonance passage, satellite orbits change dramatically in a very short period of time. We investigate the resonant history of the six small Neptunian moons. In this unique system, the exotic orbit of the large captured Triton (with a circular, retrograde, and highly tilted orbit) influences the resonances among the small satellites very strongly. We derive an analytical framework which can be applied to Neptune's satellites and to similar systems. Our numerical simulations explain the current orbital tilts of the small satellites as well as constrain key physical parameters of both Neptune and its moons. Secular orbital interactions during eccentricity damping Long-term periodic changes of orbital shape and orientation occur when two or more planets orbit the same star. The variations of orbital elements are superpositions of the same number of fundamental modes as the number of planets in the system. We investigate how this effect interacts with other perturbations imposed by external disturbances, such as the tides and relativistic effects. Through analytical studies of a system consisting of two planets, we find that an external perturbation exerted on one planet affects the other indirectly. We formulate a general theory for how both orbits evolve in response to an arbitrary externally-imposed slow change in eccentricity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on our previous work, we investigate here the effects on the wind and magnetospheric structures of weak-lined T Tauri stars due to a misalignment between the axis of rotation of the star and its magnetic dipole moment vector. In such a configuration, the system loses the axisymmetry presented in the aligned case, requiring a fully three-dimensional (3D) approach. We perform 3D numerical magnetohydrodynamic simulations of stellar winds and study the effects caused by different model parameters, namely the misalignment angle theta(t), the stellar period of rotation, the plasma-beta, and the heating index.. Our simulations take into account the interplay between the wind and the stellar magnetic field during the time evolution. The system reaches a periodic behavior with the same rotational period of the star. We show that the magnetic field lines present an oscillatory pattern. Furthermore, we obtain that by increasing theta(t), the wind velocity increases, especially in the case of strong magnetic field and relatively rapid stellar rotation. Our 3D, time-dependent wind models allow us to study the interaction of a magnetized wind with a magnetized extrasolar planet. Such interaction gives rise to reconnection, generating electrons that propagate along the planet`s magnetic field lines and produce electron cyclotron radiation at radio wavelengths. The power released in the interaction depends on the planet`s magnetic field intensity, its orbital radius, and on the stellar wind local characteristics. We find that a close-in Jupiter-like planet orbiting at 0.05 AU presents a radio power that is similar to 5 orders of magnitude larger than the one observed in Jupiter, which suggests that the stellar wind from a young star has the potential to generate strong planetary radio emission that could be detected in the near future with LOFAR. This radio power varies according to the phase of rotation of the star. For three selected simulations, we find a variation of the radio power of a factor 1.3-3.7, depending on theta(t). Moreover, we extend the investigation done in Vidotto et al. and analyze whether winds from misaligned stellar magnetospheres could cause a significant effect on planetary migration. Compared to the aligned case, we show that the timescale tau(w) for an appreciable radial motion of the planet is shorter for larger misalignment angles. While for the aligned case tau(w) similar or equal to 100 Myr, for a stellar magnetosphere tilted by theta(t) = 30 degrees, tau(w) ranges from similar to 40 to 70 Myr for a planet located at a radius of 0.05 AU. Further reduction on tau(w) might occur for even larger misalignment angles and/or different wind parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we study the stability of hypothetical satellites that are coorbital with Enceladus and Mimas. We performed numerical simulations of 50 particles around the triangular Lagrangian equilibrium points of Enceladus and Mimas taking into account the perturbation of Mimas, Enceladus, Tethys, Dione, Titan and the oblateness of Saturn. All particles remain on tadpole orbits after 10 000 yr of integration. Since in the past the orbit of Enceladus and Mimas expanded due to the tidal perturbation, we also simulated the system with Enceladus and Mimas at several different values of semimajor axes. The results show that in general the particles remain on tadpole orbits. The exceptions occur when Enceladus is at semimajor axes that correspond to 6:7, 5:6 and 4:5 resonances with Mimas. Therefore, if Enceladus and Mimas had satellites librating around their Lagrangian triangular points in the past, they would have been removed if Enceladus crossed one of these first-order resonances with Mimas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters (ω) over bar - (ω) over bar (J). Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions, so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter's mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking (ω) over bar - (ω) over bar (J) in temporary libration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically investigate the long-term dynamics of the Saturnian system by analyzing the Fourier spectra of ensembles of orbits taken around the current orbits of Mimas, Enceladus, Tethys, Rhea and Hyperion. We construct dynamical maps around the current position of these satellites in their respective phase spaces. The maps are the result of a great deal of numerical simulations where we adopt dense sets of initial conditions and different satellite configurations. Several structures associated to the current two-body mean-motion resonances, unstable regions associated to close approaches between the satellites, and three-body mean-motion resonances in the system, are identified in the map. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of gravitational capture in the framework of the Sun-Uranus-particle system. Part of the space of initial conditions is systematically explored, and the duration of temporary gravitational capture is measured. The location and size of different capture-time regions are given in terms of diagrams of initial semimajor axis versus eccentricity. The other initial orbital elements - inclination (i), longitude of the node (Ω), argument of pericenter (ω), and time of pericenter passage (τ) - are first taken to be zero. Then we investigate the cases with ω = 90°, 180°, and 270°. We also present a sample of results for Ω = 90°, considering the cases i = 60°, 120°, 150°, and 180°. Special attention is given to the influence of the initial orbital inclination, taking orbits initially in opposition at pericenter. In this case, the initial inclination is varied from 0° to 180° in steps of 10°. The success of the final stage of the capture problem, which involves the transformation of temporary captures into permanent ones, is highly dependent on the initial conditions associated with the longest capture times. The largest regions of the initial-conditions space with the longest capture times occur at inclinations of 60°-70° and 160°. The regions of possible stability as a function of initial inclination are also delimited. These regions include not only a known set of retrograde orbits, but also a new sort of prograde orbit with inclinations greater than zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the hidden pieces of the giant puzzle, which is our Solar system, the origins of irregularsatellites of the giant planets stand to be explained, while the origins of regular satellites arewell explained by the in situ formation model through matter accretion. Once they are notlocally formed, the most acceptable theory predicts that they had been formed elsewhere andbecame captured later, most likely during the last stage of planet formation. However, underthe restricted three-body problem theory, captures are temporary and there is still no assistedcapture mechanism which is well established. In a previous work, we showed that the capturemechanism of a binary asteroid under the co-planar four-body scenario yielded permanentcaptured objects with an orbital shape which is very similar to those of the actual progradeirregular Jovian satellites. By extending our previous study to a 3D case, here we demonstratethat the capture mechanism of a binary asteroid can produce permanent captures of objects byitself which have very similar orbits to irregular Jovian satellites. Some of the captured objectswithout aid of gas drag or other mechanisms present a triplet: semi-major axis, eccentricityand inclination, which is comparable to the already known irregular Jovian objects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.