991 resultados para Planetary quarantine.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incursions of plant pests and diseases pose serious threats to food security, agricultural productivity and the natural environment. One of the challenges in confidently delimiting and eradicating incursions is how to choose from an arsenal of surveillance and quarantine approaches in order to best control multiple dispersal pathways. Anthropogenic spread (propagules carried on humans or transported on produce or equipment) can be controlled with quarantine measures, which in turn can vary in intensity. In contrast, environmental spread processes are more difficult to control, but often have a temporal signal (e.g. seasonality) which can introduce both challenges and opportunities for surveillance and control. This leads to complex decisions regarding when, where and how to search. Recent modelling investigations of surveillance performance have optimised the output of simulation models, and found that a risk-weighted randomised search can perform close to optimally. However, exactly how quarantine and surveillance strategies should change to reflect different dispersal modes remains largely unaddressed. Here we develop a spatial simulation model of a plant fungal-pathogen incursion into an agricultural region, and its subsequent surveillance and control. We include structural differences in dispersal via the interplay of biological, environmental and anthropogenic connectivity between host sites (farms). Our objective was to gain broad insights into the relative roles played by different spread modes in propagating an invasion, and how incorporating knowledge of these spread risks may improve approaches to quarantine restrictions and surveillance. We find that broad heuristic rules for quarantine restrictions fail to contain the pathogen due to residual connectivity between sites, but surveillance measures enable early detection and successfully lead to suppression of the pathogen in all farms. Alternative surveillance strategies attain similar levels of performance by incorporating environmental or anthropogenic dispersal risk in the prioritisation of sites. Our model provides the basis to develop essential insights into the effectiveness of different surveillance and quarantine decisions for fungal pathogen control. Parameterised for authentic settings it will aid our understanding of how the extent and resolution of interventions should suitably reflect the spatial structure of dispersal processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large proportion of our knowledge about the surfaces of atmosphereless solar-system bodies is obtained through remote-sensing measurements. The measurements can be carried out either as ground-based telescopic observations or space-based observations from orbiting spacecraft. In both cases, the measurement geometry normally varies during the observations due to the orbital motion of the target body, the spacecraft, etc.. As a result, the data are acquired over a variety of viewing and illumination angles. Surfaces of planetary bodies are usually covered with a layer of loose, broken-up rock material called the regolith whose physical properties affect the directional dependence of remote-sensed measurements. It is of utmost importance for correct interpretation of the remote-sensed data to understand the processes behind this alteration. In the thesis, the multi-angular effects that the physical properties of the regolith have on remote-sensing measurements are studied in two regimes of electromagnetic radiation, visible to near infrared and soft X-rays. These effects are here termed generally the regolith effects in remote sensing. Although the physical mechanisms that are important in these regions are largely different, notable similarities arise in the methodology that is used in the study of the regolith effects, including the characterization of the regolith both in experimental studies and in numerical simulations. Several novel experimental setups have been constructed for the thesis. Alongside the experimental work, theoretical modelling has been carried out, and results from both approaches are presented. Modelling of the directional behaviour of light scattered from a regolith is utilized to obtain shape and spin-state information of several asteroids from telescopic observations and to assess the surface roughness and single-scattering properties of lunar maria from spacecraft observations. One of the main conclusions is that the azimuthal direction is an important factor in detailed studies of planetary surfaces. In addition, even a single parameter, such as porosity, can alter the light scattering properties of a regolith significantly. Surface roughness of the regolith is found to alter the elemental fluorescence line ratios of a surface obtained through planetary soft X-ray spectrometry. The results presented in the thesis are among the first to report this phenomenon. Regolith effects need to be taken into account in the analysis of remote-sensed data, providing opportunities for retrieving physical parameters of the surface through inverse methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the planetary-scale wave features using concurrent observations of mesospheric wind and temperature, ionospheric h'F, and tropospheric wind from Tirunelveli, Gadanki, and Kolhapur, all located in the Indian low latitudes, made during February 2009. Our investigations reveal that 3 to 5 day periodicity, characterized as ultrafast Kelvin (UFK) waves, was persistent throughout the atmosphere during this period. These waves show clear signatures of upward wave propagation from troposphere to the upper mesosphere, linking the ionosphere through a clear correlation between mesospheric winds and h'F variations. We also note that the amplitude of this wave decreased as we moved away from the equator. These results are the first of their kind from Indian sector, portraying the vertical as well as latitudinal characteristics of the 3 to 5 day UFK waves simultaneously from the troposphere to the ionosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn’s atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn’s subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation.

Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations.

Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires consideration of the dynamical response to the heat capacity asymmetry and the seasonal cycle of insolation. Interestingly, the idealized monsoonal precipitation bears resemblance to precipitation in the Indian monsoon sector, suggesting that this work may provide insight into the causes of the temporally asymmetric distribution of precipitation over southeast Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a wind-turbine gearbox, planet bearings exhibit a high failure rate and are considered as one of the most critical components. Development of efficient vibration based fault detection methods for these bearings requires a thorough understanding of their vibration signature. Much work has been done to study the vibration properties of healthy planetary gear sets and to identify fault frequencies in fixed-axis bearings. However, vibration characteristics of planetary gear sets containing localized planet bearing defects (spalls or pits) have not been studied so far. In this paper, we propose a novel analytical model of a planetary gear set with ring gear flexibility and localized bearing defects as two key features. The model is used to simulate the vibration response of a planetary system in the presence of a defective planet bearing with faults on inner or outer raceway. The characteristic fault signature of a planetary bearing defect is determined and sources of modulation sidebands are identified. The findings from this work will be useful to improve existing sensor placement strategies and to develop more sophisticated fault detection algorithms. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose new scaling laws for the properties of planetary dynamos. In particular, the Rossby number, the magnetic Reynolds number, the ratio of magnetic to kinetic energy, the Ohmic dissipation timescale and the characteristic aspect ratio of the columnar convection cells are all predicted to be power-law functions of two observable quantities: the magnetic dipole moment and the planetary rotation rate. The resulting scaling laws constitute a somewhat modified version of the scalings proposed by Christensen and Aubert. The main difference is that, in view of the small value of the Rossby number in planetary cores, we insist that the non-linear inertial term, uu, is negligible. This changes the exponents in the power-laws which relate the various properties of the fluid dynamo to the planetary dipole moment and rotation rate. Our scaling laws are consistent with the available numerical evidence. © The Authors 2013 Published by Oxford University Press on behalf of The Royal Astronomical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatives to Planetary Nebulae, such as barium stars or symbiotic systems, can shed light on the connection between Planetary Nebulae and binarity. Because of the observational selection effects against direct spectroscopic detection of binary PNe cores with orbital periods longer than a few dozen days, at present these "awkward relatives" are a critical source of our knowledge about the binary PNe population at longer periods. Below a few examples are discussed, posing constraints on the attempts to model nebula, ejection process in a binary. © 2006 International Astronomical Union.

Relevância:

20.00% 20.00%

Publicador: