922 resultados para Planetary Ball Mill
Resumo:
A powder mixture of BaO and TiO2, was mechanochemically treated in a planetary ball mill in an air atmosphere for up to 4 h, using zirconium oxide vial and zirconium oxide balls as the milling medium. Mechanochemical reaction leads to the gradual formation of BaTiO3 phase. Phase evolution during synthesis and changes in powder size and morphology were monitored by XRD, DSC, IR and TEM analysis and it was shown that the formation of BaTiO3 phase was initiated after 60 min. Extended time of milling directed to formation of higher amount of BaTiO3 perovskite phase. Barium titanate with good crystallinity was formed after 240 min sintering without pre-calcination step was performed at 1330 degrees C for 2 It within heating rate 10 degrees C/min. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
PZT ceramic powders were successfully prepared from the mixture of PbO, ZrO2 and TiO2 by mechanochemical synthesis in a planetary ball mill, under different milling conditions. Phase evolution during synthesis was monitored by X-ray diffraction analysis. Intensive milling resulted in formation of the nanocrystalline, perovskite PZT powders after 1 h of milling. This is a significant improvement in comparison to milling conditions reported by other authors. Depending on milling parameters the presence of some other phases, such as unreacted ZrO2, was also detected in some samples. The changes in powder size and morphology due to intensive milling, were determined by SEM and TEM, while BET analysis was used to determine specific surface area of the powders. Conclusions about processes taking place during mechanochemical synthesis of PZT powders were made based on the results of characterization. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Barium titanate ceramics were prepared through mechanochemical synthesis starting from fresh prepared barium oxide and titanium oxide in rutile form. Mixture of oxides was milled in zirconia oxide jar in the planetary ball-mill during 30, 60, 120 and 240 min. Extended time of milling directed to formation of higher amount of barium titanate perovskite phase. Barium titanate with good crystallinity was formed after 240 min. Sintering without pre-calcinations step was performed at 1330 degrees C for 2 hours with heating rate of 10 degrees C/min. The XRD, DSC, IR and TEM analyses were performed. Electric and ferroelectric properties were studied. Very well defined hysteresis loop was obtained.
Resumo:
Bi4Ti4O15 [BBT], a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of BaTiO3 [BT] and Bi4Ti3O12 [BIT] obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBT ceramics were sintered at 1100C for 4 h without pre-calcination step within heating rate 10C/min. The formation of phase and crystal structure of BT, BIT and BBT were approved using X-ray analysis. The morphology of obtained powders and microstructure were exhamined using scanning electron microscopy. The electrical properties of sintered samples were carried out.
Resumo:
Bi4Ti3O12 powder was synthesized from bismuth oxide and titanium oxide. Mixture of oxides was milled in zirconium oxide jar in the planetary ball-mill during 1, 3 and 6 h. Extended time of milling directed to formation of higher amount of titanates perovskite phase. Bi4Ti3O12 was formed between 1 and 3 h of milling time. The phase formation of Bi4Ti3O12, crystal structure and powder particle size were followed by XRD, Raman spectroscopy and SEM analysis. After milling for various times the powders were compacted by pressing and isothermal sintering. Sample milled for 3 h and subsequently sintered at 1000C for 24 h exhibit a hysteresis loop, confirming that the synthesized material possesses ferroelectric properties. All results affect that the structure Bi4Ti3O12 is strongly dependent on the milling time.
Resumo:
Our efforts were directed to the preparation of bismuth titanate - Bi 4e;Ti3O12 (BIT) by mechanically assisted synthesis. The mechanical activation was applied to prepare bismuth titanate, Bi4e;Ti3O12, from bismuth oxide, Bi 2O3, and titanium oxide, TiO2 (in an anatase crystal form). Mechanochemical synthesis was performed in a planetary ball mill in air atmosphere. Bismuth titanate ceramics was obtained by sintering at 1000° C The formation of Bi4e;Ti3O12 in the sintered samples was confirmed by X-ray diffraction analysis. Scanning electron microscopy, SEM, was used to study the particle size and powder morphology. The obtained results indicate that Bi4e;Ti3O12 from the powder synthesized by high-energy ball milling exhibits good sinterability, showing advantage of the mechanochemical process over conventional solid-state reaction.
Resumo:
Yttrium manganite (YMnO3) is a multiferroic material, which means that it exhibits both ferromagnetic and ferroelectric properties, so making it interesting for a variety of technological applications. In this work, single-phase YMnO3 was prepared for the first time by mechanochemical synthesis in a planetary ball mill. The YMnO3 was formed directly from the highly activated constituent oxides, Y 2O3 and Mn2O3, after 60 min of milling time. During prolonged milling, the growth of the particles occurred. The cumulative energy introduced into the system during milling for 60 min was 86 kJ/g. The X-ray powder-diffraction analysis indicates that the as-prepared samples crystallize with an orthorhombic (Pnma) YMnO3 structure. The morphology and chemical composition of the powder were investigated by SEM and FESEM. The magnetic properties of the obtained YMnO3 powders were found to change as a function of the milling time in a manner consistent with the variation in the nanocomposite microstructure. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of calcium titanate, CaTiO3, was performed by mechanical activation and thermal treatment. Milling for up to 360 minutes in a planetary ball mill mechanically activated an equimolar mixture of CaCO 3 and TiO2 powders. A small amount of mechanically activated mixtures was pressed into briquettes and calcined at 850°C for two hours. The effect of mechanical activation on the solid-state reaction was studied using X-ray powder diffraction and differential thermal analysis. The change of morphology and size of powder particles due to milling, were determined by SEM, while BET analysis was used to determine the specific surface area of the powder. The sintering process was followed by a dilatometer during thermal treatment up to 1300°C. The main conclusion of the analysis of conducted investigations is that CaTiO3 ceramics can be obtained from an activated mixture at a much lower temperature than reported in the literature owing to acceleration of the chemical reaction and sintering.
Resumo:
Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Sn-Ag-Cu (SAC) solder alloys are the best Pb free alternative for electronic industry. Since their introduction, efforts are made to improve their efficacies by tuning the processing and composition to achieve lower melting point and better wettability. Nanostructured alloys with large boundary content are known to depress the melting points of metals and alloys. In this article we explore this possibility by processing prealloyed SAC alloys close to SAC305 composition (Sn-3wt%Ag-0.5wt%Cu) by mechanical milling which results in the formation of nanostructured alloys. Pulverisette ball mill (P7) and Vibratory ball mills are used to carry out the milling of the powders at room temperature and at lower temperatures (-104 A degrees C), respectively. We report a relatively smaller depression of melting point ranging up to 5 A degrees C with respect to original alloys. The minimum grain sizes achieved and the depression of melting point are similar for both room temperature and low-temperature processed samples. An attempt has been made to rationalize the observations in terms of the basic processes occurring during the milling.
Resumo:
Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.
Resumo:
In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite
Resumo:
Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)