945 resultados para Pituitary gland
Resumo:
Pituitary apoplexy (PA) is a rare and potentially life-threatening syndrome resulting from an acute infarction or hemorrhage of the pituitary gland. Although the pathogenesis is not fully understood, some predisposing factors such as pituitary stimulation tests, diabetes mellitus, anticoagulant or antiplatelet aggregation therapy, head trauma, and high blood pressure may play a role in its pathophysiology. Octreotide is the mainstay of medical treatment for acromegaly. The majority of reported complications of octreotide therapy are gastrointestinal. We report the case of a 51-year-old acromegalic woman who developed pituitary apoplexy within the context of high blood pressure and a single dose of long-acting octreotide. Our data suggest that the combination of hypertension and octreotide therapy enhances the risk of pituitary apoplexy.
Resumo:
We have performed immunocytochemistry on rat brains using a highly specific antiserum directed against the originally described form of the glutamate transporter GLT-1 (referred to hereafter as GLT-1alpha), and another against a C-terminal splice variant of this protein, GLT-1B. Both forms of GLT-1 were abundant in rat brain, especially in regions such as the hippocampus and cerebral cortex, and macroscopic examination of sections suggested that both forms were generally regionally coexistent. However, disparities were evident; GLT-1alpha was present in the intermediate lobe of the pituitary gland, whereas GLT-1B was absent. Similar marked disparities were also noted in the external capsule, where GLT1A labeling was abundant but GLT-1B was only occasionally encountered. Conversely, GLT-1B was more extensively distributed, relative to GLT-1alpha, in areas such as the deep cerebellar nuclei. In most regions, such as the olfactory bulbs, both splice variants were present but differences were evident in their distribution. In cerebral cortex, patches were evident where GLT-1B was absent, whereas no such patches were evident for GLT-1alpha. At high resolution, other discrepancies were evident; double-labeling of areas such as hippocampus indicated that the. two splice variants may either be differentially expressed by closely apposed glial elements or that the two splice variants may be differentially targeted to distinct membrane domains of individual glial cells. (C) 2002 Wiley-Liss, Inc.
Resumo:
OBJECTIVE: Mutations of the PROP1 gene lead to combined pituitary hormone deficiency (CPHD), which is characterized by a deficiency of GH, TSH, LH/FSH, PRL and, less frequently, ACTH. This study was undertaken to investigate the molecular defect in a cohort of patients with CPHD. DESIGN, PATIENTS AND MEASUREMENTS: A multicentric study involving 46 cases of CPHD (17 familial cases belonging to seven kindreds and 29 sporadic cases) selected on the basis of clinical and hormonal evidence of GH deficiency, central hypothyroidism and hypogonadotrophic hypogonadism, in the absence of an identified cause of hypopituitarism. Mutations of PROP1 were investigated by DNA sequencing. Clinical, hormonal and neuroradiological data were collected at each centre. RESULTS: PROP1 mutations were identified in all familial cases: five kindreds presented a c. 301-302delAG mutation, one kindred presented a c. 358C --> T (R120C) mutation and one presented a previously unreported initiation codon mutation, c. 2T --> C. Of the 29 sporadic cases, only two (6.9%) presented PROP1 germline mutations (c. 301-302delAG, in both). Phenotypic variability was observed among patients with the same mutations, particularly the presence and age of onset of hypocortisolism, the levels of PRL and the results of pituitary imaging. One patient presented a sellar mass that persisted into adulthood. CONCLUSIONS: This is the first report of a mutation in the initiation codon of the PROP1 gene and this further expands the spectrum of known mutations responsible for CPHD. The low mutation frequency observed in sporadic cases may be due to the involvement of other unidentified acquired or genetic causes.
Resumo:
Neuropeptide Y (NPY) gene is expressed in human pituitary gland where its function is partially elucidated. NPY could act as a neuroendocrine modulator within this gland. This study was undertaken to assess whether NPY expression is correlated to various pathological situations. Using a highly specific anti-NPY monoclonal antibody, immunohistochemistry analysis was performed in surgically removed pituitary glands. The study included biopsies from 112 human pituitary adenomas, 12 hyperplastic glands and normal anterior pituitary tissues in 34 cases. NPY is immunodetected in 33% of all adenomas, 25% hyperplastic glands and 12% of non-tumoral pituitary gland. NPY expression was significantly higher in adenomas compared to the normal gland. However, no correlation was observed between NPY content and the type of hormonal secretion, sex, age and the status of tumour proliferating potential.
Resumo:
The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.
Resumo:
Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.
Resumo:
Release of alpha-MSH from rat hypothalamic slices was characterized with respect to ionic requirements and possible diurnal variations using a sensitive radioimmunoassay. Addition of 47 mM KCl to the superfusion medium resulted in a twofold increase in alpha-MSH functions as a neurotransmitter or neuromodulator in the hypothalamus. Both spontaneous and potassium-induced alpha-MSH release compared to spontaneous release. Removal of calcium from the superfusion medium abolished the potassium-evoked release of alpha-MSH. This supports the concept that alpha-MSH release were related to diurnal variation. Marked release from the slices was observed at 10.10 h, corresponding to a peak in the alpha-MSH concentration in the hypothalamus [18] and to a lower levels of alpha-MSH in the blood. Contrarily, no significant release from the hypothalamus was obtained at 17.00 h when hypothalamic alpha-MSH content was low, but blood levels exhibited a peak. These findings suggest that there are differences in the regulation of the alpha-MSH from the pituitary and that in the hypothalamus.
Resumo:
The dopamine antagonist [3H]-domperidone-[3H]-DOM-bound to a single class of high-affinity (Kd = 1.24 +/- 0.14 nM) and saturable receptors on dispersed bovine anterior pituitary (AP) cells. The binding of [3H]-DOM was stereoselective and reversible with agonists and antagonists. Dopamine competitions for [3H]-DOM binding modeled best for a single site consistent with an interaction with a homogeneous population of receptors. The mean number of specific binding sites labeled by [3H]-DOM was 53,000 per cell in dispersed AP cells consisting of 42% lactotrophs. Dispersed bovine AP cells attached to extracellular matrix within 3 h, and prolactin secretion from these cells was effectively inhibited by dopamine. Several observations suggested that [3H]-DOM-labeled receptors on dispersed bovine AP cells were restricted to the outer plasma membrane and not internalized. These included (1) the rapid and complete dissociation of specific [3H]-DOM binding; (2) the ability of treatment with acid or proteolytic enzymes to entirely remove specifically bound [3H]-DOM, and (3) the lack of effect of metabolic inhibitors on specific [3H]-DOM binding.
Resumo:
Individuals harboring germ-line DICER1 mutations are predisposed to a rare cancer syndrome, the DICER1 Syndrome or pleuropulmonary blastoma-familial tumor and dysplasia syndrome [online Mendelian inheritance in man (OMIM) #601200]. In addition, specific somatic mutations in the DICER1 RNase III catalytic domain have been identified in several DICER1-associated tumor types. Pituitary blastoma (PitB) was identified as a distinct entity in 2008, and is a very rare, potentially lethal early childhood tumor of the pituitary gland. Since the discovery by our team of an inherited mutation in DICER1 in a child with PitB in 2011, we have identified 12 additional PitB cases. We aimed to determine the contribution of germ-line and somatic DICER1 mutations to PitB. We hypothesized that PitB is a pathognomonic feature of a germ-line DICER1 mutation and that each PitB will harbor a second somatic mutation in DICER1. Lymphocyte or saliva DNA samples ascertained from ten infants with PitB were screened and nine were found to harbor a heterozygous germ-line DICER1 mutation. We identified additional DICER1 mutations in nine of ten tested PitB tumor samples, eight of which were confirmed to be somatic in origin. Seven of these mutations occurred within the RNase IIIb catalytic domain, a domain essential to the generation of 5p miRNAs from the 5' arm of miRNA-precursors. Germ-line DICER1 mutations are a major contributor to PitB. Second somatic DICER1 "hits" occurring within the RNase IIIb domain also appear to be critical in PitB pathogenesis.
Resumo:
Objective: To evaluate the influence of end-stage liver disease and orthotopic liver transplantation in the pituitary function and hormone metabolism before and after liver transplantation.Methods: In a prospective study, serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and prolactin (PRL) of 30 male patients with cirrhosis were determined two to four hours before and six months after liver transplantation. The results were compared according to the Model for End-stage Liver Disease (MELD).Results: male patients with liver cirrhosis have hypogonadism. FSH was normal, but inappropriately low due to androgen failure; E2 and PRL, on their turn, were high. After liver transplantation, FSH and LH levels increased (p < 0.05), whereas E2 and PRL normalized (p < 0.05). The MELD score did not influence changes in FSH, PRL and LH, however, the more severe the cirrhosis was, the more significant was the normalization of E2 (p = 0.01).Conclusion: Patients with cirrhosis and male hypogonadism have inappropriately normal levels of FSH and LH, associated with an increase in E2 and LRP. After liver transplantation, FSH and LH increased, while E2 and PRL returned to normal. Changes in E2 levels were most pronounced in patients with MELD > 18. The severity of cirrhosis had no influence on FSH, PRL and LH.
Resumo:
The release of adrenocorticotropin (ACTH) from the corticotrophs is controlled principally by vasopressin and corticotropin-releasing hormone (CRH). Oxytocin may augment the release of ACTH under certain conditions, whereas atrial natriuretic peptide acts as a corticotropin release-inhibiting factor to inhibit ACTH release by direct action on the pituitary. Glucocorticoids act on their receptors within the hypothalamus and anterior pituitary gland to suppress the release of vasopressin and CRH and the release of ACTH in response to these neuropeptides. CRH neurons in the paraventricular nucleus also project to the cerebral cortex and subcortical regions and to the locus ceruleus (LC) in the brain stem. Cortical influences via the limbic system and possibly the LC augment CRH release during emotional stress, whereas peripheral input by pain and other sensory impulses to the LC causes stimulation of the noradrenergic neurons located there that project their axons to the CRH neurons stimulating them by alpha-adrenergic receptors. A muscarinic cholinergic receptor is interposed between the alpha-receptors and nitric oxidergic interneurons which release nitric oxide that activates CRH release by activation of cyclic guanosine monophosphate, cyclooxygenase, lipoxygenase and epoxygenase. Vasopressin release during stress may be similarly mediated. Vasopressin augments the release of CRH from the hypothalamus and also augments the action of CRH on the pituitary. CRH exerts a positive ultrashort loop feedback to stimulate its own release during stress, possibly by stimulating the LC noradrenergic neurons whose axons project to the paraventricular nucleus to augment the release of CRH.
Resumo:
Undernutrition elicited by a low-protein diet determines a marked reduction of hypophyseal activity and affects the function of the respective target organs. The objective of the present investigation was to study the ultrastructural and quantitative immunohistochemical changes of the different pituitary cell populations in undernourished monkeys that had been previously shown to have significant changes in craniofacial growth. Twenty Saimiri sciureus boliviensis monkeys of both sexes were used. The animals were born in captivity and were separated into two groups at one year of age, i.e., control and undernourished animals. The monkeys were fed ad libitum a 20% (control group) and a 10% (experimental group) protein diet for two years. Pituitaries were processed for light and electron microscopy. The former was immunolabeled with anti-GH, -PRL, -LH, -FSH, -ACTH, and -TSH sera. Volume density and cell density were measured using an image analyzer. Quantitative immunohistochemistry revealed a decrease in these parameters with regard to somatotrophs, lactotrophs, gonadotrophs and thyrotrophs from undernourished animals compared to control ones. In these populations, the ultrastructural study showed changes suggesting compensatory hyperfunction. On the contrary, no significant changes were found in the morphometric parameters or the ultrastructure of the corticotroph population. We conclude that in undernourished monkeys the somatotroph, lactotroph, gonadotroph, and thyrotroph cell populations showed quantitative immunohistochemical changes that can be correlated with ultrastructural findings.
Resumo:
The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.
Resumo:
Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6). Exposure to methylmercury (0-100 μM) was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h) also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.