852 resultados para Physical Design
Resumo:
In this paper, implementation and testing of non- commercial GaN HEMT in a simple buck converter for envelope amplifier in ET and EER transmission techn iques has been done. Comparing to the prototypes with commercially available EPC1014 and 1015 GaN HEMTs, experimentally demonstrated power supply provided better thermal management and increased the switching frequency up to 25MHz. 64QAM signal with 1MHz of large signal bandw idth and 10.5dB of Peak to Average Power Ratio was gener ated, using the switching frequency of 20MHz. The obtaine defficiency was 38% including the driving circuit an d the total losses breakdown showed that switching power losses in the HEMT are the dominant ones. In addition to this, some basic physical modeling has been done, in order to provide an insight on the correlation between the electrical characteristics of the GaN HEMT and physical design parameters. This is the first step in the optimization of the HEMT design for this particular application.
Resumo:
This research examines the process of placemaking in LeDroit Park, a residential Washington, DC, neighborhood with a historic district at its core. Unpacking the entwined physical and social evolution of the small community within the context of the Nation’s Capital, this analysis provides insight into the role of urban design and development as well as historic designation on shaping collective identity. Initially planned and designed in 1873 as a gated suburb just beyond the formal L’Enfant-designed city boundary, LeDroit Park was intended as a retreat for middle and upper-class European Americans from the growing density and social diversity of the city. With a mixture of large romantic revival mansions and smaller frame cottages set on grassy plots evocative of an idealized rural village, the physical design was intentionally inwardly-focused. This feeling of refuge was underscored with a physical fence that surrounded the development, intended to prevent African Americans from nearby Howard University and the surrounding neighborhood, from using the community’s private streets to access the City of Washington. Within two decades of its founding, LeDroit Park was incorporated into the District of Columbia, the surrounding fence was demolished, and the neighborhood was racially integrated. Due to increasingly stringent segregation laws and customs in the city, this period of integration lasted less than twenty years, and LeDroit Park developed into an elite African American enclave, using the urban design as a bulwark against the indignities of a segregated city. Throughout the 20th century housing infill and construction increased density, yet the neighborhood never lost the feeling of security derived from the neighborhood plan. Highlighting the architecture and street design, neighbors successfully received historic district designation in 1974 in order to halt campus expansion. After a stalemate that lasted two decades, the neighborhood began another period of transformation, both racial and socio-economic, catalyzed by a multi-pronged investment program led by Howard University. Through interviews with long-term and new community members, this investigation asserts that the 140-year development history, including recent physical interventions, is integral to placemaking, shaping the material character as well as the social identity of residents.
Resumo:
Our day-to-day life is dependent on several embedded devices, and in the near future, many more objects will have computation and communication capabilities enabling an Internet of Things. Correspondingly, with an increase in the interaction of these devices around us, developing novel applications is set to become challenging with current software infrastructures. In this paper, we argue that a new paradigm for operating systems needs to be conceptualized to provide aconducive base for application development on Cyber-physical systems. We demonstrate its need and importance using a few use-case scenarios and provide the design principles behind, and an architecture of a co-operating system or CoS that can serve as an example of this new paradigm.
Resumo:
Background: Declining physical activity is associated with a rising burden of global disease. There is little evidence about effective ways to increase adherence to physical activity. Therefore, interventions are needed that produce sustained increases in adherence to physical activity and are cost-effective. The purpose is to assess the effectiveness of a primary care physical activity intervention in increasing adherence to physical activity in the general population seen in primary care. Method and design: Randomized controlled trial with systematic random sampling. A total of 424 subjects of both sexes will participate; all will be over the age of 18 with a low level of physical activity (according to the International Physical Activity Questionnaire, IPAQ), self-employed and from 9 Primary Healthcare Centres (PHC). They will volunteer to participate in a physical activity programme during 3 months (24 sessions; 2 sessions a week, 60 minutes per session). Participants from each PHC will be randomly allocated to an intervention (IG) and control group (CG). The following parameters will be assessed pre and post intervention in both groups: (1) health-related quality of life (SF-12), (2) physical activity stage of change (Prochaska's stages of change), (3) level of physical activity (IPAQ-short version), (4) change in perception of health (vignettes from the Cooperative World Organization of National Colleges, Academies, and Academic Associations of Family Physicians, COOP/WONCA), (5) level of social support for the physical activity practice (Social Support for Physical Activity Scale, SSPAS), and (6) control based on analysis (HDL, LDL and glycated haemoglobin).Participants' frequency of visits to the PHC will be registered over the six months before and after the programme. There will be a follow up in a face to face interview three, six and twelve months after the programme, with the reduced version of IPAQ, SF-12, SSPAS, and Prochaska's stages. Discussion: The pilot study showed the effectiveness of an enhanced low-cost, evidence-based intervention in increased physical activity and improved social support. If successful in demonstrating long-term improvements, this randomised controlled trial will be the first sustainable physical activity intervention based in primary care in our country to demonstrate longterm adherence to physical activity. Trial Registration: A service of the U.S. National Institutes of Health. Developed by the National Library of Medicine. ClinicalTrials.gov ID: NCT00714831.
Resumo:
Broadcast transmission mode in ad hoc networks is critical to manage multihop routing or providing medium accesscontrol (MAC)-layer fairness. In this paper, it is shown that ahigher capacity to exchange information among neighbors may beobtained through a physical-MAC cross-layer design of the broadcastprotocol exploiting signal separation principles. Coherentdetection and separation of contending nodes is possible throughtraining sequences which are selected at random from a reducedset. Guidelines for the design of this set are derived for a lowimpact on the network performance and the receiver complexity.
Resumo:
Advent of lasers together with the advancement in fiber optics technology has revolutionized the sensor technology. Advancement in the telemetric applications of optical fiber based measurements is an added bonus. The present thesis describes variety of fiber based sensors using techniques like micro bending, long period grating and evanescent waves. Sensors to measure various physical and chemical parameters are described in this thesis.
Resumo:
The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. This paper discusses the technology behind ECMA-368, the required numerical bandwidth, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates'.
Resumo:
The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. With the aim to effective consumer electronic define and create cost equipment this paper discusses the technology behind ECMA-368 physical layer, the design freedom availabilities, the required processing, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates(1).
Resumo:
This article presents a detailed study of the application of different additive manufacturing technologies (sintering process, three-dimensional printing, extrusion and stereolithographic process), in the design process of a complex geometry model and its moving parts. The fabrication sequence was evaluated in terms of pre-processing conditions (model generation and model STL SLI), generation strategy and physical model post-processing operations. Dimensional verification of the obtained models was undertook by projecting structured light (optical scan), a relatively new technology of main importance for metrology and reverse engineering. Studies were done in certain manufacturing time and production costs, which allowed the definition of an more comprehensive evaluation matrix of additive technologies.
Resumo:
This work was based on the synthesis and characterization of innovative crystals for biomedical and technological applications. Different types of syntheses were developed in order to obtain crystals with high photocatalytic properties. A hydrothermal synthesis was also processed to correlate the chemical-physical characteristics with synthesis parameters obtaining synthesis of nanoparticles of titanium dioxide with different morphology, size and crystalline phase depending on the variation of the synthesis parameters. Also a synthesis in water at 80 °C temperature and low pressure was developed from which anatase containing a small percentage of brookite nanoparticles were obtained, presenting a high photocatalytic activity. These particles have been used to obtain the microcrystals formed by an inorganic core of hydroxyapatite surface covered by TiO2 nanoparticles. Micrometer material with higher photocatalytic has been produced. The same nanoparticles have been functionalized with resorcinol oxidized in order to increase the photocatalytic efficiency. Photodegradation test results have confirmed this increase. Finally, synthetic nanoparticles with a waterless synthesis using formic acid and octanol, through esterification "in situ" were synthesized. Nanoparticles superficially covered by carboxylic residues able to bind a wide range of molecules to obtain further photocatalytic properties were obtained.
Resumo:
Includes abstract.
Resumo:
Design verification in the digital domain, using model-based principles, is a key research objective to address the industrial requirement for reduced physical testing and prototyping. For complex assemblies, the verification of design and the associated production methods is currently fragmented, prolonged and sub-optimal, as it uses digital and physical verification stages that are deployed in a sequential manner using multiple systems. This paper describes a novel, hybrid design verification methodology that integrates model-based variability analysis with measurement data of assemblies, in order to reduce simulation uncertainty and allow early design verification from the perspective of satisfying key assembly criteria.
Resumo:
The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, ``is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence of steady aerodynamic loading and LPT flutter. Many pressing topics influencing LPT flutter including shocks, their nonlinearity, and three-dimensionality are also addressed along the way. The work is concluded by introducing a useful preliminary design tool that can estimate within seconds the entire aerodynamic damping versus nodal diameter curve for a given three-dimensional cascade.