987 resultados para Phylogeny


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this three-finger toxin toolkit will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much progress in our understanding of the phylogeny and evolution of ticks, particularly hard ticks, in the past 5 years. Indeed, a consensus about the phylogeny of the hard ticks has emerged. Our current working hypothesis for the phylogeny of ticks is quite different to the working hypothesis of 5 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent. One subfamily, the Hyalomminae, will probably be sunk, yet another, the Bothriocrotoninae n. subfamily, will be created. Bothriocrotoninae n. subfamily, and Bothriocroton n. genus, are being created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma (ticks of reptiles). There has been progress in our understanding of the subfamily Rhipicephalinae. The genus Rhipicephalus is almost certainly paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus will probably become a subgenus of Rhipicephalus. This change to the nomenclature, unlike other options, will keep the name Boophilus in common usage. Rhipicephalus (Boophilus) microplus may still called B. microplus, and Rhipicephalus (Boophilus) annulatus may still be called B. annulatus, but the nomenclature will have been changed to reflect our knowledge of the phylogeny and evolution of these ticks. New insights into the historical zoogeography of ticks will also be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogeny of the Australian legume genus Daviesia was estimated using sequences of the internal transcribed spacers of nuclear ribosomal DNA. Partial congruence was found with previous analyses using morphology, including strong support for monophyly of the genus and for a sister group relationship between the clade D. pachyloma and the rest of the genus. A previously unplaced bird-pollinated species, anceps + D. D. epiphyllum, was well supported as sister to the only other bird-pollinated species in the genus, D. speciosa, indicating a single origin of bird pollination in their common ancestor. Other morphological groups within Daviesia were not supported and require reassessment. A strong and previously unreported sister clade of Daviesia consists of the two monotypic genera Erichsenia and Viminaria. These share phyllode-like leaves and indehiscent fruits. The evolutionary history of cord roots, which have anomalous secondary thickening, was explored using parsimony. Cord roots are limited to three separate clades but have a complex history involving a small number of gains (most likely 0-3) and losses (0-5). The anomalous structure of cord roots ( adventitious vascular strands embedded in a parenchymatous matrix) may facilitate nutrient storage, and the roots may be contractile. Both functions may be related to a postfire resprouting adaptation. Alternatively, cord roots may be an adaptation to the low-nutrient lateritic soils of Western Australia. However, tests for association between root type, soil type, and growth habit were equivocal, depending on whether the variables were treated as phylogenetically dependent (insignificant) or independent ( significant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archosaur anatomy enable the compilation of a new dataset, which assimilates and standardizes character data pertinent to higher-level archosaur phylogeny, and is scored across the largest group of taxa yet analysed. This dataset includes 47 new characters (25% of total) and eight taxa that have yet to be included in an analysis, and total taxonomic sampling is more than twice that of any previous study. This analysis produces a well-resolved phylogeny, which recovers mostly traditional relationships within Avemetatarsalia, places Phytosauria as a basal crurotarsan clade, finds a close relationship between Aetosauria and Crocodylomorpha, and recovers a monophyletic Rauisuchia comprised of two major subclades. Support values are low, suggesting rampant homoplasy and missing data within Archosauria, but the phylogeny is highly congruent with stratigraphy. Comparison with alternative analyses identifies numerous scoring differences, but indicates that character sampling is the main source of incongruence. The phylogeny implies major missing lineages in the Early Triassic and may support a Carnian-Norian extinction event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Macrobrachium Bate, 1868 is one of the best examples of widespread crustacean genera distributed globally throughout tropical and subtropical waters. Previous investigators have noted the systematic complexity of the group, and have suggested rearrangements within the family Palaemonidae. Our phylogenetic analysis of new mitochondrial DNA sequences of 58 species of Macrobrachium distributed mainly in America support the hypothesis of monophyly of this genus, if Cryphiops Dana, 1852 is accepted as a generic synonym. We concluded that the independent evolution of different types of life cycle (abbreviated larval development-ALD and extended larval development-ELD) must have occurred more than once in the history of the group. Similarly, we also concluded that the current type species of the genus, Macrobrachium americanum Bate, 1868, should not be considered valid, as previously proposed. The synonymy of two members of the `olfersi` species complex (M. birai Lobao, Melo&Fernandes, 1986 and M. holthuisi Genofre&Lobao, 1978) with M. olfersi (Wiegmann, 1836) was confirmed. Similar results were found in comparing M. petronioi Melo, Lobao&Fernandes, 1986 and M. potiuna (Muller, 1880), in which the genetic divergence placed M. petronioi within the level of intraspecific variation of M. potiuna. The taxonomic status of the genus Cryphiops, as well as theories on the origin of Macrobrachium, is also called into question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osflintia manu, new genus, new species, of long-horned caddisfly (Leptoceridae: Triplectidinae: Grumichellini) is described and illustrated from southeastern Peru. The phylogeny of Grumichellini Morse (Leptoceridae: Triplectidinae) is revisited and hypotheses of homology of some morphological characters are reconsidered. The monophyly of the tribe is corroborated and the phylogenetic relationships of its included genera are inferred to be (Triplexa (Gracilipsodes ((Grumichella, Amazonatolica) (Atanatolica, Osflintia, n. gen.)))) from adult and larval characters. Diagnostic characters of the new genus include the following: reduced tibial spur formula (2, 2, 2), loss of forewing crossvein sc-r1, hind wing discoidal cell closed, hind wing fork IV present, pair of long setae on tergum IX of the male genitalia, and pair of processes on the apex of segment X.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tipulomorpha (craneflies) comprise one of the largest subgroups of Diptera, but its phylogeny at different levels has been poorly explored. This study presents the most comprehensive cladistic analysis of the group ever made, with emphasis on the genera and subgenera of the subfamily Limnophilinae (Limoniidae), assumed to include some of the earliest lineages of Tipulomorpha sensu stricto and therefore important for the understanding of the early patterns in the evolution of the craneflies. Eighty-eight characters of the male imago were scored for 104 exemplar species. The most parsimonious trees were searched using implied weighting, in the framework of a sensitivity analysis with different values of k (2 to 6). The dataset based on the characters of adult male morphology showed high levels of homoplasy and yielded very incongruent and unstable phylogenetic results, which are very sensitive to changes in analytical parameters. In the preferred and most parsimonious phylogenetic hypothesis, the Pediciidae is the sister-group of all other Tipulomorpha sensu stricto. The results indicate the paraphyly of the Limoniidae with respect to the Cylindrotomidae and Tipulidae, which are considered sister-groups. The Limoniidae subfamilies Limnophilinae, Limoniinae and Chioneinae are considered non-monophyletic. The study allowed a reconstruction of the possible ground plan condition of selected features of the adult male morphology of craneflies. The genera/subgenera Epiphragma (Epiphragma), Acantholimnophila, Shannonomyia, Limnophila (Arctolimnophila), Eloeophila, Conosia, Polymera, Polymera (Polymerodes), Prionolabis, Eutonia, Phylidorea (Phylidorea), Metalimnophila, Gynoplistia (Cerozodia), Gynoplistia (Dirhipis), Nothophila, Pseudolimnophila (Pseudolimnophila), Pilaria and Ulomorpha are considered monophyletic, but in general are defined by combinations of very homoplastic character states. Two Temperate Gondwanan clades, (Tonnoirella + (Edwardsomyia + (Tinemyia + (Rhamphophila + (Nothophila))))) and ((Notholimnophila + Bergrothomyia) + (Mesolimnophila + (Chilelimnophila + Ctenolimnophila))) are recovered. The genera Limnophila, Neolimnomyia, Gynoplistia (sensu lato) and Hexatoma (sensu lato) are considered non-monophyletic. The systematic position and some morphological characters of `problematic` taxa, such as Dactylolabis, Elephantomyia, Helius and Atarba are discussed on the light of the proposed phylogeny and the analysis of the characters. Character states are richly illustrated. A detailed study of the morphology of the male genitalia is made, and several genera and species have the morphology of the male genitalia illustrated for the first time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five strains of the filamentous bacterium 'Nostocoida limicola' III were successfully isolated into pure culture from samples of activated sludge biomass from five plants in Australia. 16S rRNA gene sequence analyses showed that all isolates were members of the Planctomycetales, most closely related to Isosphaera pallida, but they differed phenotypically from this species in that they did not glide and were not thermotolerant. The ultrastructure of these 'N. limicola' III isolates was also consistent with them being Planctomycetales, in that they possessed complex intracellular membrane systems compartmentalizing the cells. However, the arrangements of these intracellular membranes differed between isolates. These data confirm that 'N. limicola' III is phylogenetically unrelated to both 'N. limicola' I and 'N. limicola' II, activated sludge filamentous bacteria which share morphological features in common with 'N. limicola' III and which have been presumed historically to be the same or very similar bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We inferred the phylogeny of 33 species of ticks from the subfamilies Rhipicephalinae and Hyalomminae from analyses of nuclear and mitochondrial DNA and morphology. We used nucleotide sequences from 12S rRNA, cytochrome c oxidase I, internal transcribed spacer 2 of the nuclear rRNA, and 18S rRNA. Nucleotide sequences and morphology were analyzed separately and together in a total-evidence analysis. Analyses of the five partitions together (3303 characters) gave the best-resolved and the best-supported hypothesis so far for the phylogeny of ticks in the Rhipicephalinae and Hyalomminae, despite the fact that some partitions did not have data for some taxa. However, most of the hidden conflict (lower support in the total-evidence analyses compared to that in the individual analyses) was found in those partitions that had taxa without data. The partitions with complete taxonomic sampling had more hidden support (higher support in the total-evidence analyses compared to that in the separate-partition analyses) than hidden conflict. Mapping of geographic origins of ticks onto our phylogeny indicates an African origin for the Rhipicephalinae sensu lato (i.e., including Hyalomma spp.), the Rhipicephalus-Boophilus lineage, the Dermacentor-Anocentor lineage, and the Rhipicephalus-Booophilus-Nosomma-Hyalomma-Rhipicentor lineage. The Nosomma-Hyalomma lineage appears to have evolved in Asia. Our total-evidence phylogeny indicates that (i) the genus Rhipicephalus is paraphyletic with respect to the genus Boophilus, (ii) the genus Dermacentor is paraphyletic with respect to the genus Anocentor, and (iii) some subgenera of the genera Hyalomma and Rhipicephalus are paraphyletic with respect to other subgenera in these genera. Study of the Rhipicephalinae and Hyalomminae over the last 7 years has shown that analyses of individual datasets (e.g., one gene or morphology) seldom resolve many phylogenetic relationships, but analyses of more than one dataset can generate well-resolved phylogenies for these ticks. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-nosed bandicoots, Isoodon, have undergone marked range contractions since European colonisation of Australia and are currently divided into many subspecies, the validity of which is debated. Discriminant function analysis of morphology and a phylogeny of Isoodon based on mtDNA control region sequences indicate a clear split between two of the three recognised species, I. macrourus and I. obesulus/auratus. However, while all previously recognised taxa within the I. obesulus/auratus group are morphologically distinct, I. auratus and I. obesulus are not phylogenetically distinct for mtDNA. The genetic divergence between I. obesulus and I. auratus (2.6%) is similar to that found among geographic isolates of the former (I. o. obesulus and I. o. peninsulae: 2.7%). Further, the divergence between geographically close populations of two different species (I. o. obesulus from Western Australia and I. a. barrowensis: 1.2%) is smaller than that among subspecies within I. auratus (I. a. barrowensis and I. auratus from northern Western Australia: 1.7%). A newly discovered population of Isoodon in the Lamb Range, far north Queensland, sympatric with a population of I. m. torosus, is shown to represent a range extension of I. o. peninsulae (350 km). It seems plausible that what is currently considered as two species, I. obesulus and I. auratus, was once one continuous species now represented by isolated populations that have diverged morphologically as a consequence of adaptation to the diverse environments that occur throughout their range. The taxonomy of these populations is discussed in relation to their morphological distinctiveness and genetic similarity.