877 resultados para Photic Stimulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successful interaction with the world depends on accurate perception of the timing of external events. Neurons at early stages of the primate visual system represent time-varying stimuli with high precision. However, it is unknown whether this temporal fidelity is maintained in the prefrontal cortex, where changes in neuronal activity generally correlate with changes in perception. One reason to suspect that it is not maintained is that humans experience surprisingly large fluctuations in the perception of time. To investigate the neuronal correlates of time perception, we recorded from neurons in the prefrontal cortex and midbrain of monkeys performing a temporal-discrimination task. Visual time intervals were presented at a timescale relevant to natural behavior (<500 ms). At this brief timescale, neuronal adaptation--time-dependent changes in the size of successive responses--occurs. We found that visual activity fluctuated with timing judgments in the prefrontal cortex but not in comparable midbrain areas. Surprisingly, only response strength, not timing, predicted task performance. Intervals perceived as longer were associated with larger visual responses and shorter intervals with smaller responses, matching the dynamics of adaptation. These results suggest that the magnitude of prefrontal activity may be read out to provide temporal information that contributes to judging the passage of time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn maximum reward, they had to monitor their decision and use that information to bet advantageously. Two monkeys learned to base their bets on their decisions within a few weeks. We implemented an operational definition of metacognitive behavior that relied on trial-by-trial analyses and signal detection theory. Both monkeys exhibited metacognition according to these quantitative criteria. Neither external visual cues nor potential reaction time cues explained the betting behavior; the animals seemed to rely exclusively on internal traces of their decisions. We documented the learning process of one monkey. During a 10-session transition phase, betting switched from random to a decision-based strategy. The results reinforce previous findings of metacognitive ability in monkeys and may facilitate the neurophysiological investigation of metacognitive functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED: Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. SIGNIFICANCE STATEMENT: Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The macaque frontal eye field (FEF) is involved in the generation of saccadic eye movements and fixations. To better understand the role of the FEF, we reversibly inactivated a portion of it while a monkey made saccades and fixations in response to visual stimuli. Lidocaine was infused into a FEF and neural inactivation was monitored with a nearby microelectrode. We used two saccadic tasks. In the delay task, a target was presented and then extinguished, but the monkey was not allowed to make a saccade to its location until a cue to move was given. In the step task, the monkey was allowed to look at a target as soon as it appeared. During FEF inactivation, monkeys were severely impaired at making saccades to locations of extinguished contralateral targets in the delay task. They were similarly impaired at making saccades to locations of contralateral targets in the step task if the target was flashed for < or =100 ms, such that it was gone before the saccade was initiated. Deficits included increases in saccadic latency, increases in saccadic error, and increases in the frequency of trials in which a saccade was not made. We varied the initial fixation location and found that the impairment specifically affected contraversive saccades rather than affecting all saccades made into head-centered contralateral space. Monkeys were impaired only slightly at making saccades to contralateral targets in the step task if the target duration was 1000 ms, such that the target was present during the saccade: latency increased, but increases in saccadic error were mild and increases in the frequency of trials in which a saccade was not made were insignificant. During FEF inactivation there usually was a direct correlation between the latency and the error of saccades made in response to contralateral targets. In the delay task, FEF inactivation increased the frequency of making premature saccades to ipsilateral targets. FEF inactivation had inconsistent and mild effects on saccadic peak velocity. FEF inactivation caused impairments in the ability to fixate lights steadily in contralateral space. FEF inactivation always caused an ipsiversive deviation of the eyes in darkness. In summary, our results suggest that the FEF plays major roles in (1) generating contraversive saccades to locations of extinguished or flashed targets, (2) maintaining contralateral fixations, and (3) suppressing inappropriate ipsiversive saccades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When people evaluate syllogisms, their judgments of validity are often biased by the believability of the conclusions of the problems. Thus, it has been suggested that syllogistic reasoning performance is based on an interplay between a conscious and effortful evaluation of logicality and an intuitive appreciation of the believability of the conclusions (e.g., Evans, Newstead, Allen, & Pollard, 1994). However, logic effects in syllogistic reasoning emerge even when participants are unlikely to carry out a full logical analysis of the problems (e.g., Shynkaruk & Thompson, 2006). There is also evidence that people can implicitly detect the conflict between their beliefs and the validity of the problems, even if they are unable to consciously produce a logical response (e.g., De Neys, Moyens, & Vansteenwegen, 2010). In 4 experiments we demonstrate that people intuitively detect the logicality of syllogisms, and this effect emerges independently of participants' conscious mindset and their cognitive capacity. This logic effect is also unrelated to the superficial structure of the problems. Additionally, we provide evidence that the logicality of the syllogisms is detected through slight changes in participants' affective states. In fact, subliminal affective priming had an effect on participants' subjective evaluations of the problems. Finally, when participants misattributed their emotional reactions to background music, this significantly reduced the logic effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Empirical evidence supports the hypothesis that emotional states might contribute to cardiovascular disease and health through multiple pathways. To the extent that the acute cardiovascular response to emotional events plays a role in cardiovascular health and disease, an essential step in order to understand this possible link is to define the hemodynamic response to affective challenges. This was the aim of the present study. We assessed blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac output, and total peripheral resistance (TPR) in response to 13 picture series in 18 men and 19 women (mean age 26) in order to investigate their hemodynamic responses associated with activation of the appetitive and defensive motivational systems underlying emotional experience. The hemodynamic parameters were recorded by finger-cuff photoplethysmography with Finometer™ (FMS Finapres Medical Systems, Amsterdam) and electrocardiography with the Lifeshirt system (VivoMetrics Inc., Ventura, California). Participants rated self-perceived pleasantness and arousal for each series. In men, BP and SV, but not TPR, increased with increasing self-rated arousal both for appetitive and defensive activation, whereas in women these relationships were almost absent, especially, for defensive activation. HR decelerated more in response to negative than positive and neutral pictures, and more so in men than women. These findings indicate striking sex differences. In particular, it is suggested that the sympathetic inotropic effect to the heart increases with increasing self-rated arousal strongly in men but only weakly in women. Regardless of sex differences, the modulation of the cardiovascular response to affective pictures along the dimensions of pleasantness and arousal is primarily myocardial, and the pattern of cardiovascular response is consistent with a configuration of cardiac sympathetic-parasympathetic coactivation. One possible implication of the observed sex differences concerns the link between affective states and cardiovascular health and disease. Men have a higher incidence of cardiovascular diseases than premenopausal women, and exaggerated sympathetic reactivity to emotional events is a potential pathophysiological mechanism. These findings extend current knowledge showing that under several acute behavioral challenges men demonstrate stronger cardiovascular reactivity than women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: In patients with outer retinal degeneration, a differential pupil response to long wavelength (red) versus short wavelength (blue) light stimulation has been previously observed. The goal of this study was to quantify differences in the pupillary re-dilation following exposure to red versus blue light in patients with outer retinal disease and compare them with patients with optic neuropathy and with healthy subjects. DESIGN: Prospective comparative cohort study. PARTICIPANTS: Twenty-three patients with outer retinal disease, 13 patients with optic neuropathy and 14 normal subjects. METHODS: Subjects were tested using continuous red and blue light stimulation at three intensities (1, 10 and 100 cd/m2) for 13 s per intensity. Pupillary re-dilation dynamics following the brightest intensity was analysed and compared between the three groups. MAIN OUTCOME MEASURES: The parameters of pupil re-dilation used in this study were: time to recover 90% of baseline size; mean pupil size at early and late phases of re-dilation; and differential re-dilation time for blue versus red light. RESULTS: Patients with outer retinal disease showed a pupil that tended to stay smaller after light termination and thus had a longer time to recovery. The differential re-dilation time was significantly greater in patients with outer retinal disease (median = 28.0 s, P < 0.0001) compared with controls and patients with optic neuropathy. CONCLUSIONS: A differential response of pupil re-dilation following red versus blue light stimulation is present in patients with outer retinal disease but is not found in normal eyes or among patients with visual loss from optic neuropathy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of intraocular straylight (IOS) induced by white opacity filters (WOF) on threshold measurements for stimuli employed in three perimeters: standard automated perimetry (SAP), pulsar perimetry (PP) and the Moorfields motion displacement test (MDT).¦METHODS: Four healthy young (24-28 years old) observers were tested six times with each perimeter, each time with one of five different WOFs and once without, inducing various levels of IOS (from 10% to 200%). An increase in IOS was measured with a straylight meter. The change in sensitivity from baseline was normalized, allowing comparison of standardized (z) scores (change divided by the SD of normative values) for each instrument.¦RESULTS: SAP and PP thresholds were significantly affected (P < 0.001) by moderate to large increases in IOS (50%-200%). The drop in motion displacement (MD) from baseline with WOF 5, was approximately 5 dB, in both SAP and PP which represents a clinically significant loss; in contrast the change in MD with MDT was on average 1 minute of arc, which is not likely to indicate a clinically significant loss.¦CONCLUSIONS: The Moorfields MDT is more robust to the effects of additional straylight in comparison with SAP or PP.