967 resultados para Phased-array Antenna
Resumo:
A new transceive system for chest imaging for MRI applications is presented. A focused, eight-element transceive torso phased array coil is designed to investigate transmitting a focused radiofrequency field deep within the torso and to enhance signal homogeneity in the heart region. The system is used in conjunction with the SENSE reconstruction technique to enable focused parallel imaging. A hybrid finite-difference-time-domain/method-of-moments method is used to accurately predict the radiofrequency behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept, which shows that radiofrequency field focusing with SENSE reconstruction is theoretically achievable. (c) 2005 Wiley-Liss, Inc.
Resumo:
This article presents an array antenna with beam-steering capability in azimuth over a wide frequency band using real-valued weighting coefficients that can be realized in practice by amplifiers or attenuators. The described beamforming scheme relies on a 2D (instead of 1D) array structure in order to make sure that there are enough degrees of freedom to realize a given radiation pattern in both the angular and frequency domains. In the presented approach, weights are determined using an inverse discrete Fourier transform (IDFT) technique by neglecting the mutual coupling between array elements. Because of the presence of mutual coupling, the actual array produces a radiation pattern with increased side-lobe levels. In order to counter this effect, the design aims to realize the initial radiation pattern with a lower side-lobe level. This strategy is demonstrated in the design example of 4 X 4 element array. (C) 2005 Wiley Periodicals. Inc.
Resumo:
In this work, a new design concept in chest imaging for MRI application is presented. A focused, 8-element transceive torso phased array coil is designed to investigate transmitting focused B1 field deep within the torso to enhance signal intensity and use in conjunction with SENSE reconstruction technique. Hybrid FDTD/MOM method is used to accurately predict the RF behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept which shows that B1 field focusing with SENSE reconstruction is achievable, and the 8-element transceive torso phased array coil has the advantage to be used in transmit and receive mode for optimum and fast chest imaging.