993 resultados para Phase velocity
Resumo:
The double sulfate family (ABSO4), where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2⋅6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, C11 = C22, C33, C44 = C55, C12, C14 and C13 = C23 are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the polar plots of phase velocity, slowness, Young’s modulus and linear compressibility in a–b and a–c planes.
Resumo:
Elastic properties of sodium doped Lithium potassium sulphate, LiK0.9Na0.1SO4, crystal has been studied by ultrasonic Pulse Echo Overlap [PEO] technique and are reported for the first time. The controversy regarding the type of crystal found while growth is performed at 35 °C with equimolar fraction of Li2SO4H2O, K2SO4 and Na2SO4 has been resolved by studying the elastic properties. The importance of this crystal is that it exhibits pyroelectric, ferroelectric and electro optic properties. It is simultaneously ferroelastic and superionic. The elastic properties of LiK0.9Na0.1SO4 crystal are well studied by measuring ultrasonic velocity in the crystal in certain specified crystallographic directions and evaluating the elastic stiffness constants, compliance constants and Poisson’s ratios. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the surface plots of phase velocity, slowness and linear compressibility in a-b and a-c planes.
Resumo:
Certain organic crystals are found to possess high non- linear optical coefficients,often one to two orders of magnitude higher than those of the well known inorganic non-linear optical materials.Benzoyl glycine is one such crystal whose optical second-harmonic generation efficiency is much higher than that of potassium dihydrogen phosphate. Single crystals of benzoyl glycine are grown by solvent evaporation technique using N,N-dimethyl formamide as the solvent.All the nine second-order elastic stiffness constants of this orthorhombic crystal are determined from ultrasonic wave velocity measurements employing the pulse echo overlap technique.The anisotropy of elastic wave propagation in this crystal is demonstrated by plotting the phase velocity, slowness,Young's modulus and linear compressibility surfaces along symmetry planes.The volume compressibility, bulk modulus and relevant Poisson's ratios are also determined. Variation of the diagonal elastic stiffness constants with temperature over a limited range are measured and reported.
Resumo:
The spatial structure and phase velocity of tropopause disturbances localized around the subpolar jet in the Southern Hemisphere are investigated using 6-hourly European Centre for Medium-Range Weather Forecasts reanalysis data covering 15 yr (1979–93). The phase velocity and phase structure of the tropopause disturbances are in good agreement with those of an edge wave vertically trapped at the tropopause. However, the vertical distribution of the ratio of potential to kinetic energy exhibits maxima above and below the tropopause and a minimum around the tropopause, in contradiction to edge wave theory for which the ratio is unity throughout the troposphere and stratosphere. This difference in vertical structure between the observed tropopause disturbances and edge wave theory is attributed to the effects of a finite-depth tropopause together with the next-order corrections in Rossby number to quasigeostrophic dynamics
Resumo:
Purpose: To describe spontaneous blink kinematics in Graves' upper eyelid retraction (UER).Methods: The magnetic search coil technique was used to record spontaneous blinks of 15 healthy subjects (aged 23-56 years, 15 eyelids) and 15 patients with Graves' UER (aged 22-62 years, 15 eyelids) during a 5-min period of video observation, and the signals were digitized at 200 Hz (12 bits). Overall, a total of 2,798 blinks were recorded for the controls and 1,860 for the patients. The distance between pupil center and upper eyelid margin in the primary position of gaze (MRD) was measured with the Image J software.Results: The blinking rate of patients was lower than that of control subjects, with a mean (+/-SEM) blinking rate (blinks/min) of 13.0 +/- 1.7 for patients and of 20.0 +/- 2.1 for the controls (t = 2.58, P = 0.016). There were no statistically significant differences in blink amplitude between controls (22.7 +/- 3.1 degrees) and Graves' patients (24.7 +/- 3.3 degrees). However, while only 22% of the blinks performed by controls were smaller than MRD, this rate was 78% for patients. In addition, in blinks larger than 25, patients showed lower down-phase velocity than controls.Conclusions: Patients with Graves' UER show reduced blinks rates and abnormal blink kinematics, which might be related to the development of exposure keratitis in this disease.
Resumo:
This work presents a theoretical and numerical analysis using the transverse resonance technique (TRT) and a proposed MTRT applied in the analysis of the dispersive characteristics of microstrip lines built on truncated isotropic and anisotropic dielectric substrates. The TRT uses the transmission lines model in the transversal section of the structure, allowing to analyze its dispersive behavior. The difference between TRT and MTRT consists basically of the resonance direction. While in the TRT the resonance is calculated in the same direction of the metallic strip normal axis, the MTRT considers the resonance in the metallic strip parallel plane. Although the application of the MTRT results in a more complex equivalent circuit, its use allows some added characterization, like longitudinal section electric mode (LSE) and longitudinal section magnetic mode (LSM), microstrips with truncated substrate, or structures with different dielectric regions. A computer program using TRT and MTRT proposed in this work is implemented for the characterization of microstrips on truncated isotropic and anisotropic substrates. In this analysis, propagating and evanescent modes are considered. Thus, it is possible to characterize both the dominant and higher order modes of the structure. Numerical results are presented for the effective permittivity, characteristic impedance and relative phase velocity for microstrip lines with different parameters and dimensions of the dielectric substrate. Agreement with the results obtained in the literature are shown, as well as experimental results. In some cases, the convergence analysis is also performed by considering the limiting conditions, like particular cases of isotropic materials or structures with dielectric of infinite size found in the literature. The numerical convergence of the formulation is also analyzed. Finally, conclusions and suggestions for the continuity of this work are presented
Resumo:
This work describes the use of a large-aperture PVDF receiver in the measurement of liquid density and composite material elastic constants. The density measurement of several liquids is obtained with accuracy of 0.2% using a conventional NDE emitter transducer and a 70-mm-diameter, 52-mu m P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants is based on the phase velocity measurement. Diffraction can lead to errors around 1% in velocity measurement when using alternatively the conventional pair of ultrasonic transducers (1-MHz frequency and 19-mm-diameter) operating in through-transmission mode, separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz, 19-mm-diameter transducers. Nevertheless, the dispersion at 10 MHz can result in errors of about 0.5%, when measuring the velocity in composite materials. The use of an 80-mm diameter, 52-mu m-thick PVDF membrane receiver practically eliminates the diffraction effects in phase velocity measurement. The elastic constants of a carbon fiber reinforced polymer were determined and compared with the values obtained by a tensile test. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
This work describes the use of a large aperture PVDF receiver in the measurement of density of liquids and elastic constants of composite materials. The density measurement of several liquids is obtained with the accuracy of less than 0.2% using a conventional NDT emitter transducer and a 70-mm diameter, 52-μm P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants of composite materials is based in the measurement of phase velocity. It is shown that the diffraction can lead to errors around 1% in the velocity measurement when using a pair of ultrasonic transducers (1MHz and 19mm diameter) operating in transmission-reception mode separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz transducers. On the other hand, the dispersion at 10 MHz can result in errors of about 0.5%, measuring the velocity in composite materials. The use of an 80-mm diameter, 52-μm thick PVDF membrane receiver allows measuring the phase velocity without the diffraction effects.
Resumo:
Neste trabalho compilamos informações sobre um grande número de medidas de velocidade de grupo para ondas Rayleigh do modo fundamental, com período até 100 segundos. Tais dados consistiram de informações retiradas da literatura geofísica e cobriram toda a Terra. Parte dos dados foi organizada em trabalhos anteriores e uma segunda parte foi apresentada aqui de forma inédita. Para a América do Sul, selecionamos os principais conjuntos de dados de tais ondas e elaboramos diversos perfis onde a distribuição de velocidade de ondas cisalhantes foi obtida a partir da inversão das curvas de dispersão de velocidade de grupo. Tais perfis serviram para termos uma ideia inicial da estrutura interna da Terra em nosso continente. Com o conjunto global de dados de velocidade de grupo foi possível obtermos os mapas de distribuição lateral de valores de velocidade para cada período referencial entre 20 e 100 segundos. Tais mapas foram produzidos da mesma forma que os mapas de velocidade de fase de ROSA (1986), onde a amostragem for para realizada para blocas medindo 10x10 graus, englobando toda a Terra, em projeção mercator. O valor de velocidade de grupo em cada bloco, para cada período, foi obtido a partir da inversão estocástica dos dados de anomalia de velocidade em relação aos modelos regionalizados de JORDAN (1981) com os valores de velocidade de grupo de ROSA et al. (1992). Os mapas de velocidade de grupo obtidos aqui foram então empregados, na América do Sul, com os valores de velocidade de fase dos mapas obtidos por ROSA (1986). Assim, foi possível determinarmos, em profundidade, os mapas de variação de velocidade de onda cisalhante e os mapas de distribuição de valores de densidade. Com isto, pudemos construir o primeiro mapa de profundidade do Moho (todo do Manto Superior) da América do Sul.
Resumo:
This work reports the study of an attractive interfacial wave for application in ultrasonic NDE techniques for inspection and fluid characterization. This wave, called quasi-Scholte mode, is a kind of flexural wave in a plate in contact with a fluid which presents a good sensitivity to the fluid properties. In order to explore this feature, the phase velocity curve of quasi-Scholte mode is experimentally measured in a plate in contact with a viscous fluid, showing a good agreement with theory.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Using the Feynman procedure of ordered exponential operators we solve the evolution equations for a two-neutrino system considering arbitrarily varying matter density and magnetic field along the neutrino trajectory. We show that a large geometrical phase velocity suppresses νL→νR transitions unless some stationary trajectory is found along the neutrino path. Concerning the solar neutrino case, if we admit the standard solar model matter distribution, no such trajectory can be found.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Spatially, temporally, and angularly resolved collinear collective Thomson scattering was used to diagnose the excitation and damping of a relativistic-phase-velocity self-modulated laser wakefield. The excitation of the electron plasma wave was observed to be driven by Raman-type instabilities. The damping is believed to originate from both electron beam loading and modulational instability. The collective Thomson scattering of a probe pulse from the ion acoustic waves, resulting from modulational instability, allows us to measure the temporal evolution of the plasma temperature. The latter was found to be consistent with the damping of the electron plasma wave.