926 resultados para Pesticide residues in food.
Resumo:
In the present study an evaluation was made of a method for the determination of organochlorine pesticide residues in ethoxylated lanolin. Samples were homogenized with Celite, transferred to chromatographic columns, prepacked with silica gel deactivated to 10%. The pesticide elution was processed with n-hexane-dichloromethane and the concentrated eluate was analyzed using gas-liquid chromatography (GC) with electron capture detection (ECD). The composition of the elution solvent was a significant factor for the recovery of the pesticides. Mean recoveries obtained for fortified samples ranged from 87 to 94% for p,p'-DDE, dieldrin, endrin, p,p'-DDD and p,p'-DDT. Optimization of the experimental conditions resulted in a small-scale method that combines extraction and cleanup in a single step. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.
Resumo:
A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.
Resumo:
"[Report to the] ranking minority member, Subcommittee on Agricultural Research and General Legislation, Committee on Agriculture, Nutrition, and Forestry, United States Senate"--P. [1].
Resumo:
When most people think of food safety they think of food poisoning and bacteria. They also, one hopes, generally follow the well-understood public advice on bacterial risks and store their food properly and cook it thoroughly. But what about chemical risks in food? Do many consumers ask the question “if drug residues are in my food, does cooking make it safe?” Or do they assume that following the good advice on bacterial risks also affords some protection against the health risks of chemical contaminants? In this short report we highlight some difficulties in assessing the stability of veterinary drug residues during cooking and summarise our cooking studies on anthelmintics, nitroimidazoles and nitrofuran residues in various foods. safefood Knowledge Networks http://safefood.ning.com/
Resumo:
Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of “tailor-made” molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation.
Resumo:
Resumo:
"Serial no. 100-99."
Resumo:
Pesticide residues in food and environment pose serious health risks to human beings. Plant protection laws, among other things, regulate misuse of agricultural pesticides. Compliance with such laws consequently reduces risks of pesticide residues in food and the environment. Studies were conducted to assess the compliance with plant protection laws among tomato farmers in Mvomero District, Morogoro Region, Tanzania. Compliance was assessed by examining pesticide use practices that are regulated by the Tanzanian Plant Protection Act (PPA) of 1997. A total of 91 tomato farmers were interviewed using a structured questionnaire. Purposive sampling was used in selecting at least 30 respondent farmers from each of the three villages of Msufini, Mlali and Doma in Mvomero District, Morogoro Region. Simple Random Sampling was used to obtain respondents from the sampling frame. Individual and social factors were examined on how they could affect pesticide use practices regulated by the law. Descriptive statistics, mainly frequency, were used to analyze the data while associations between variables were determined using Chi-Square and logistic regression model. The results showed that respondents were generally aware of the existence of laws on agriculture, environment and consumer health, although none of them could name a specific Act. The results revealed further that 94.5% of the farmers read instructions on the pesticides label. However, only 21% used the correct doses of pesticides, 40.7% stored pesticides in special stores, 68.1% used protective gear, while 94.5% always read instructions on the label before using a pesticide product. Training influenced the application rate of pesticide (p < 0.001) while awareness of agricultural laws significantly influenced farmers’ tendency to read information on the labels (p < 0.001). The results showed further that education significantly influenced the use of protective gears by farmers (p = 0.042). Education also significantly affected the manner in which farmers stored pesticide-applying equipment (p = 0.024). Furthermore, farmers’ awareness of environmental laws significantly (p = 0.03) affected farmers’ disposal of empty pesticide containers. Results of this study suggest the need for express provisions on safe use and handling of pesticides and related offences in the Act, and that compliance should be achieved through education rather than coercion. Results also suggest establishment of pesticide disposal mechanisms and structures to reduce unsafe disposal of pesticide containers. It is recommended that farmers should be educated and trained on proper use of pesticides. Farmers’ awareness on laws affecting food, environment and agriculture should be improved.