146 resultados para Peroxides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collision-induced dissociation ( CID) mass spectra of the \[M-H](-) anions of methyl, ethyl, and tert-butyl hydroperoxides have been measured over a range of collision energies in a flowing afterglow - selected ion flow tube (FA-SIFT) mass spectrometer. Activation of the CH3OO- anion is found to give predominantly HO- fragment anions whilst CH3CH2OO- and (CH3)(3)COO- produce HOO- as the major ionic fragment. These results, and other minor fragmentation pathways, can be rationalized in terms of unimolecular rearrangement of the activated anions with subsequent decomposition. The rearrangement reactions occur via initial abstraction of a proton from the alpha-carbon in the case of CH3OO- or the beta-carbon for CH3CH2OO- and (CH3)(3)COO-. Electronic structure calculations suggest that for the CH3CH2OO- anion, which can theoretically undergo both alpha- and beta-proton abstraction, the latter pathway, resulting in HOO- + CH2CH2, is energetically preferred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auto-ignition temperature of polystyrene, poly(vinyl chloride) and carboxy terminated polybutadiene has been measured at various oxygen pressures (1-28 atm) in a high pressure differential thermal analysis assembly at a heating rate of 10°C/min. The exothermic peak appears between 250-350°C in polystyrene and poly(vinyl chloride) and between 150-200°C for carboxy terminated polybutadiene. Ignition appears to be controlled by in situ forma tion and degradation of polymeric peroxides. Inverse dependence of ignition temperature on oxygen pressure is explained by the rate equation which con siders that ignition of a particular sample, of a fixed geometry, occurs when gasification rate reaches a unique critical value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a series of seeondary- and tertiary-amino-substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert-amino groups in benzylamine-based diselenides by sec-amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N-propyl- and N-isopropylamino-substituted diselenides are 8-18 times more active than the corresponding N,N-dipropyl- and N,N-diisopropylamine-based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec-amino-substituted disclenides is similar to that of the tert-amine-based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx-like activities. it is observed that the sec-amino groups are better than the tert-amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol-exchange reactions in the selenenyl sulfides derived from sec-amine-based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec-amine-based compounds are more stable toward further reactions with peroxides than their tert-amine-based analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric peroxides have received renewed attention in the recent past, in view of some significant explorations of their physical and chemical properties. The potential of polymeric peroxides as a class, as specialized fuel, and the need to synthesize such new materials have been reported in the literature. So far, this class of polymers is constituted only by a dozen or so polyperoxides. From the point of view of their use in propellant applications, the importance lies in making materials which are easy to handle etc., unlike the earlier reported poly(styrene peroxide) (PSP), a sticky semi-solid mass. However, judging from the better combustion characteristics, exploring aromatic monomers was thought worthwhile. In this preliminary communication, the synthesis of a new polymeric peroxide made from 1,4-divinylbenzene is reported. The polymer obtained was in powder form and had an exothermic heat of degradation approximately equal to that of PSP. 4 ref.--AA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric peroxides are equimolar alternating copolymers formed by the reaction of vinyl monomers with oxygen. Physicochemical studies on the microstructure and chain dynamics of poly(styrene peroxide) PSP were first carried out by Cais and Bovey. We have found that polyperoxides are formed as main intermediates in solid-propellant combustion by the interaction of the monomer and oxygen generated by the decomposition of the polymeric binder and the oxidizer ammonium perchlorate. The experimentally determined heat of degradation and that calculated from thermochemical considerations reveal that polyperoxides undergo highly exothermic primary degradation, the rate-controlling step being the O-O bond dissociation. A random-chain scission mechanism for the thermal degradation of polyperoxides has been proposed. The prediction of unusual exothermic degradation of polyperoxides has resulted in the discovery of an interesting new phenomenon of 'autopyrolysability' in polymers. Several new polyperoxides based on vinyl naphthalene have been synthesized. We have also found that PSP, in conjunction with amines, can be used as initiator at ambient temperature for the radical polymerization of vinyl monomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A odontologia moderna utiliza métodos e técnicas ultraconservadores no intuito de corrigir os diversos tipos de alterações cromáticas observadas clinicamente. Os meios empregados baseiam-se na utilização de substâncias químicas à base de peróxidos presentes em diversas concentrações. O presente estudo objetivou avaliar a microestrutura de três resinas compostas fotossensíveis submetidas à aplicação de um agente clareador a base de peróxido de hidrogênio a 35% (Whiteness HP Maxx - fabricante: FGM), ativado por uma fonte híbrida de energia luminosa (Aparelho de Laser-Led Whitening Lase, fabricante: DMC). Para isso, foram confeccionados 30 corpos de prova (CDP) 10 para cada grupo, no formato de discos, com 13 mm de diâmetro e 2,0 mm de espessura em uma matriz de teflon e aço inox, fotoativados por um aparelho de luz halógena convencional (Optilux 401 - Demetron/UR) por 40 segundos com densidade de potência média igual a 450 mW/cm2. Os grupos foram dispostos da seguinte forma: Grupo 1 - resina microparticulada (Durafill VS - fabricante: Heraeus Kulzer); Grupo 2 - resina micro-híbrida (Esthet-X - fabricante: Dentsply); e Grupo 3 resina nanoparticulada (Filtek Supreme XT fabricante: 3M ESPE). Todos os materiais restauradores utilizados eram da cor A2. Após serem submetidos à sequência de acabamento e polimento os CDP foram armazenados por sete dias em saliva artificial, limpos em ultra-som, envelhecidos artificialmente de acordo com a norma ASTM G 154. Os CDP dos três grupos foram aleatoriamente divididos em 2 subgrupos (ST sem tratamento e CT com tratamento) e finalmente submetidos aos experimentos. Os CDP dos subgrupos 1-ST, 2- ST e 3-ST foram triturados (SPEX SamplePrep 8000-series, marca: Mixer/Mills) seguido pela verificação dos materiais por meio de um espectrômetro (marca/modelo: Shimadzu EDX 720) para certificação da ausência de elementos pertencentes ao meio de moagem e por fim foram levados a um difrator de raios-X (marca / modelo: Philips -PW 3040 -X'Celerator- 40kV; 30mA; (λ): CuKα; 0,6; 0,2mm; 0,05 (2θ); 2s; 10-90 (2θ). Em seguida os CDP dos subgrupos 1-CT, 2- CT e 3-CT foram tratados com o peróxido de hidrogênio de acordo com o protocolo do fabricante para a fonte híbrida luminosa de energia selecionada, totalizando 9 aplicações de 10 minutos, onde eram respeitados os tempos de 3 minutos de ativação por 20 segundos de descanso, finalizando 10 minutos em cada aplicação. Mediante a este tratamento, os CDP dos subgrupos CT eram verificados e avaliados pelo mesmo método descrito anteriormente. Após interpretação gráfica, análise comparativa por meio do processamento digital das imagens no programa KS400 3.0 (Carl Zeiss Vision) e análise de concordância por cinco avaliadores calibrados utilizando um escore, pôde-se concluir que houve degradação estrutural e que as estruturas cristalinas das resinas estudadas foram afetadas de forma distinta quando tratadas pelo peróxido de hidrogênio; onde observou-se que: Grupo 1 > Grupo 3 > Grupo 2. Foi sugerido a realização de novos estudos, relacionados à interação do peróxido de hidrogênio às resinas compostas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No projeto desenvolvido, ligações cruzadas foram formadas no polietileno de alta densidade e alto peso molecular, grade HS5103, através dos processos reticulação por peróxidos e silanos, com o objetivo de se avaliar o efeito da introdução de ligações cruzadas nas propriedades térmicas e mecânicas deste PEAD. Misturas entre o HS5103 e os peróxidos orgânicos, 2,5-Dimetil-2,5-di(terc-butilperoxi)hexano (DHBP) e peróxido de dicumila (DCP), foram produzidas e analisadas para a avaliação do efeito dos tipos de peróxido na reticulação e propriedades do PEAD e para determinação da concentração e do tipo de peróxido a ser utilizado como agente iniciador de reticulação por silano. Ensaios de índice de fluidez (MFI), reometria capilar, extração de polímero por xileno (teor de gel), análise termogravimétrica (TGA), calorimetria diferencial de varredura (DSC) e tração foram realizados para caracterização das misturas com peróxidos. Os resultados indicaram aumento da viscosidade com o aumento da concentração de peróxido, sendo o DHBP o que apresentou maior índice de aumento; não houve mudanças relevantes nas propriedades mecânicas e, ocorreu aumento do grau de cristalinidade, sendo mais significativo nas amostras com DCP. Após avaliação dos resultados citados, para as amostras a serem reticuladas via silano, foi promovida a graftização de diferentes concentrações de viniltrimetóxisilano (VTMS) na presença de 0,01%p/p de DCP com a adição de 0,05%p/p de catalisador, posteriormente a reticulação foi promovida em água. As amostras produzidas foram caracterizadas por ensaios de teor de gel, análise dinâmico-mecânica (DMA), espectroscopia de absorção no infravermelho (FTIR), TGA, ensaios de desgaste por deslizamento e tração. Nas amostras com silano a formação de ligações cruzadas foi gradativa, apresentando de 8% de gel para amostra com 0,5%p/p de VTMS a 57 % para amostra com1,5% p/p de silano, maior concentração utilizada. A análise dinâmico-mecânica (DMA) realizada evidenciou que houve um aumento densidade de ligações cruzadas e do módulo de armazenamento após temperatura de fusão com o teor de silano, concordando com os resultados de teor de gel. As análises de FTIR mostraram que houve a graftização e a formação de ligações cruzadas no PEAD HS5103. Não se observou um aumento significativo para o limite de resistência para o PEAD modificado. E os testes de desgaste por deslizamento indicaram um aumento da resistência ao desgaste das amostras reagidas com VTMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD(50) (14 mu g MC-LReq kg(-1) body weight) and 1LD(50) (87 mu g MC-LReq kg(-1) body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD(50) dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD(50) not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously. complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method in situ chlorinating-graft copolymerization (ISCGC) of grafting maleic anhydride (MAH) on isotactic polypropylene (iPP) in gas-solid phase was investigated in this paper. Chlorine (Cl-2) was used as initiator, chlorinating agent and termination agent at the same time during the reaction. The iPP was chlorinated as well as grafted with MAH in the reaction process. The product with chlorine and MAH in the same molecule was named as PP-cg-MAH. Existence of PP-cg-MAH was identified by Fourier transform infrared. Thermal behavior and crystallinity of PP-cg-MAH were analyzed by differential scanning calorimetry, X-ray diffraction and polarizing microscope. Influencing factors for the value of graft degree were also discussed. Compared with conventional peroxide initiated graft method, ISCGC revealed higher MAH graft efficiency (33%), and particularly alleviated degradation of iPP. iPP could be grafted successfully and without changing physical properties dramatically through this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft chain propagation rate coefficients (k(p.g)) for grafting AA onto linear low density polyethylene (LLDPE) in the melt in ESR tubes have been measured via Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy in the temperature range from 130 to 170 degrees C. To exclude the effect of homopolymerization on the grafting. the LLDPE was pre-irradiated in the air by electron beam to generate the peroxides and then treated with iodide solution to eliminating one kind of peroxides, hydroperoxide. The monomer conversion is determined by FTIR and the chain propagation free-radical concentration is deduced from the double integration of the well-resolved ESR spectra, consisting nine lines in the melt. The temperature dependence of k(p.g) is expressed:The magnitude of k(p.g) from FTIR and ESR analysis is in good agreement with the theoretical data deduced from ethylene-AA copolymerization, suggesting this method could reliably and directly provide the propagation rate coefficient. The comparison of k(p.g) with the data extrapolated from solution polymerization at modest temperature indicates that the extrapolated data might not be entirely fitting to discuss the kinetics behavior in the melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetics studies on reactive extrusion were carried out for the difficulties as expected. In this work, the macromolecular peroxide-induced grafting of acrylic acid and methyl methacrylate onto linear low density polyethylene by reactive extrusion was chosen as the model system for the kinetics study; the samples were taken out from the barrel at five ports along screw axis and analyzed by FTIR, H-1 NMR, and ESR. For the first time, the time-evolution of reaction rate, the reaction order, and the activation energy of graft copolymerization and homopolymerization in the twin screw extruder were directly obtained. On the basis of these results, the general reaction mechanism was tentatively proposed. It was demonstrated that an amount of chain propagation free radicals could keep alive for several minutes even the peroxides completely decomposed and the addition of monomer to polymeric radicals was the rate-controlled step for the graft copolymerization.