948 resultados para Performance of High Energy Physics detectors
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
Recent activity in the development of future weather data for building performance simulation follows recognition of the limitations of traditional methods, which have been based on a stationary (observed) climate. In the UK, such developments have followed on from the availability of regional climate models as delivered in UKCIP02 and recently the probabilistic projections released under UKCP09. One major area of concern is the future performance and adaptability of buildings which employ exclusively passive or low-energy cooling systems. One such method which can be employed in an integral or retrofit situation is direct or indirect evaporative cooling. The effectiveness of evaporative cooling is most strongly influenced by the wet-bulb depression of the ambient air, hence is generally regarded as most suited to hot, dry climates. However, this technology has been shown to be effective in the UK, primarily in mixed-mode buildings or as a retrofit to industrial/commercial applications. Climate projections for the UK generally indicate an increase in the summer wet-bulb depression, suggesting an enhanced potential for the application of evaporative cooling. The paper illustrates this potential by an analysis of the probabilistic scenarios released under UKCP09, together with a detailed building/plant simulation of case study building located in the South-East of England. The results indicate a high probability that evaporative cooling will still be a viable low-energy technique in the 2050s.
Resumo:
In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y 2O 3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders. © (2010) Trans Tech Publications.
Resumo:
The energy spectrum of cosmic rays between 10(16) eV and 10(18) eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2 . 10(16) eV and a significant steepening at approximate to 8 . 10(16) eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the efficacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 +/- 0.1 /fb from proton-proton collisions produced by the Large Hadron Collider at a center-of-mass energy of sqrt(s) = 7 TeV.
Resumo:
With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.
Resumo:
Objectives: To assess the accuracy of reporting from both a diet history and food record and identify some of the characteristics of more accurate reporters in a group of healthy adult volunteers for an energy balance study. Design: Prospective measurements in free-living people. Setting: Wollongong, Australia. Subjects: Fifteen healthy volunteers (seven male, eight female; aged 22 -59 y; body mass index (BMI) 19 - 33 kg/m(2)) from the local community in the city of Wollongong, Australia. Interventions: Measurement of energy intake via diet history interview and 7 day food records, total energy expenditure by the doubly labelled water technique over 14 days, physical activity by questionnaire, and body fat by dual-energy X-ray absorptiometry. Results: Increased misreporting of energy intake was associated with increased energy expenditure (r = 0.90, P < 0.0001, diet history; r(s)=0.79, P=0.0005, food records) but was not associated with age, sex, BMI or body fat. Range in number of recorded dinner foods correlated positively with energy expenditure (r(s)=0.63, P=0.01) and degree of misreporting (r(s)=0.71, P=0.003, diet history; r(s)=0.63, P=0.01, food records). Variation in energy intake at dinner and over the whole day identified by the food records correlated positively with energy expenditure (r=0.58, P = 0.02) and misreporting on the diet history (r=0.62, P=0.01). Conclusions: Subjects who are highly active or who have variable dietary and exercise behaviour may be less accurate in reporting dietary intake. Our findings indicate that it may be necessary to screen for these characteristics in studies where accuracy of reporting at an individual level is critical. Sponsorship: The study was supported in part by Australian Research Council funds made available through the University of Wollongong.
Resumo:
Congenital malformations or injuries of the urethra can be treated using existing autologous tissue, but these procedures are sometimes associated with severe complications. Therefore, tissue engineering may be advantageous for generating urethral grafts. We evaluated engineered high-density collagen gel tubes as urethral grafts in 16 male New Zealand white rabbits. The constructs were either acellular or seeded with autologous smooth muscle cells, isolated from an open bladder biopsy. After the formation of a urethral defect by excision, the tissue-engineered grafts were interposed between the remaining urethral ends. No catheter was placed postoperatively. The animals were evaluated at 1 or 3 months by contrast urethrography and histological examination. Comparing the graft caliber to the control urethra at 3 months, a larger caliber was found in the cell-seeded grafts (96.6% of the normal caliber) than in the acellular grafts (42.3%). Histology of acellular and cell-seeded grafts did not show any sign of inflammation, and spontaneous regrowth of urothelium could be demonstrated in all grafts. Urethral fistulae, sometimes associated with stenosis, were observed, which might be prevented by urethral catheter application. High-density collagen gel tubes may be clinically useful as an effective treatment of congenital and acquired urethral pathologies.
Resumo:
Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated
Resumo:
We investigate the potential of a future kilometer-scale neutrino telescope, such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dphi(nu)/dE(nu)similar toalphaE(nu)(beta), we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (alpha) as well as slope (beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.
Resumo:
Evaluation of rhythmic fluctuations cf physical and mental variables should be of special significance for the understanding of students' performance and setting the schedules of school activities. The present study investigated the pattern of diurnal variation in oral temperature, sleepiness and performance of a group of adolescents undergoing a daytime school schedule. Eighteen girls (mean age 16 years-old), who attended the same class from 0715h to 1645h, were tested on seven days. They measured their oral temperature, quantified their sleepiness level by means of a visual analogue scale, and completed the following tests: letter cancellation test, addition test, and a simple motor task. One-way ANOVA statistics for repeated measures was used in order to verify the effect of test time on oral temperature,sleepiness and performance. Possible correlations between the level of sleepiness and performance were investigated by means of Spearman rank correlation. The results revealed significant time of day effect cn all variables, except for the number of addition errors. Oral temperature values showed an increase from morning to afternoon. Letter cancellation, motor task and addition scores increased from early morning to late afternoon, showing rapid fluctuations throughout the day. Sleepiness level was negatively correlated with letter cancellation scores during the first three tests of the day. In agreement with other work, the diurnal variation of oral temperature, letter cancellation and addition test showed an improvement as the day progressed. Sleepiness, on the other hand, decreased throughout the day, with the highest level associated with the first test of the day, suggesting a circadian pattern of variation rather than a cumulative effect due to school activities.
Resumo:
With the possible exception of meteor impacts, high-energy astrophysical events such as supernovae, gamma-ray bursts (GRB) and flares are usually not taken into account for biological and evolutionary studies due to their low rates of occurrence. We show that a class of these events may occur at distances and time scales in which their biological effects are non-negligible, maybe more frequent than the impacts of large asteroids. We review the effects of four transient astrophysical sources of ionizing radiation on biospheres - stellar flares, giant flares from soft gamma repeaters (SGR), supernovae and GRB. The main damaging features of them are briefly discussed and illustrated. We point out some open problems and ongoing work. Received 28 February 2012, accepted 6 July 2012, first published online 10 August 2012