961 resultados para Perceptual Speech Evaluation
Resumo:
Objective. To compare the voice performance of children involved in street labor with regular children using perceptual-auditory and acoustic analyses.Methods. A controlled cross-sectional study was carried out on 7- to 10-year-old children of both genders. Children from both groups lived with their families and attended school regularly; however, child labor was evident in one group and not the other. A total of 200 potentially eligible street children, assisted by the Child Labor Elimination Programme (PETI), and 400 regular children were interviewed. Those with any vocal discomfort (106, 53% and 90, 22.5%) had their voices assessed for resonance, pitch, loudness, speech rate, maximum phonation time, and other acoustic measurements.Results. A total of 106 street children (study group [SG]) and 90 regular children (control group [CG]) were evaluated. the SG group demonstrated higher oral and nasal resonance, reduced loudness, a lower pitch, and a slower speech rate than the CG. the maximum phonation time, fundamental frequency, and upper harmonics were higher in the SG than the CG. Jitter and shimmer were higher in the CG than the SG.Conclusion. Using perceptual-auditory and acoustic analyses, we determined that there were differences in voice performance between the two groups, with street children having better quality perceptual and acoustic vocal parameters than regular children. We believe that this is due to the procedures and activities performed by the Child Labor Elimination Program (PETI), which helps children to cope with their living conditions.
Resumo:
When designing human-machine interfaces it is important to consider not only the bare bones functionality but also the ease of use and accessibility it provides. When talking about voice-based inter- faces, it has been proven that imbuing expressiveness into the synthetic voices increases signi?cantly its perceived naturalness, which in the end is very helpful when building user friendly interfaces. This paper proposes an adaptation based expressiveness transplantation system capable of copying the emotions of a source speaker into any desired target speaker with just a few minutes of read speech and without requiring the record- ing of additional expressive data. This system was evaluated through a perceptual test for 3 speakers showing up to an average of 52% emotion recognition rates relative to the natural voice recognition rates, while at the same time keeping good scores in similarity and naturality.
Resumo:
Automatic speech recognition from multiple distant micro- phones poses significant challenges because of noise and reverberations. The quality of speech acquisition may vary between microphones because of movements of speakers and channel distortions. This paper proposes a channel selection approach for selecting reliable channels based on selection criterion operating in the short-term modulation spectrum domain. The proposed approach quantifies the relative strength of speech from each microphone and speech obtained from beamforming modulations. The new technique is compared experimentally in the real reverb conditions in terms of perceptual evaluation of speech quality (PESQ) measures and word error rate (WER). Overall improvement in recognition rate is observed using delay-sum and superdirective beamformers compared to the case when the channel is selected randomly using circular microphone arrays.
Resumo:
We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of ``virtual pattern'' developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
Speech enhancement in stationary noise is addressed using the ideal channel selection framework. In order to estimate the binary mask, we propose to classify each time-frequency (T-F) bin of the noisy signal as speech or noise using Discriminative Random Fields (DRF). The DRF function contains two terms - an enhancement function and a smoothing term. On each T-F bin, we propose to use an enhancement function based on likelihood ratio test for speech presence, while Ising model is used as smoothing function for spectro-temporal continuity in the estimated binary mask. The effect of the smoothing function over successive iterations is found to reduce musical noise as opposed to using only enhancement function. The binary mask is inferred from the noisy signal using Iterated Conditional Modes (ICM) algorithm. Sentences from NOIZEUS corpus are evaluated from 0 dB to 15 dB Signal to Noise Ratio (SNR) in 4 kinds of additive noise settings: additive white Gaussian noise, car noise, street noise and pink noise. The reconstructed speech using the proposed technique is evaluated in terms of average segmental SNR, Perceptual Evaluation of Speech Quality (PESQ) and Mean opinion Score (MOS).
Resumo:
Existing work in Computer Science and Electronic Engineering demonstrates that Digital Signal Processing techniques can effectively identify the presence of stress in the speech signal. These techniques use datasets containing real or actual stress samples i.e. real-life stress such as 911 calls and so on. Studies that use simulated or laboratory-induced stress have been less successful and inconsistent. Pervasive, ubiquitous computing is increasingly moving towards voice-activated and voice-controlled systems and devices. Speech recognition and speaker identification algorithms will have to improve and take emotional speech into account. Modelling the influence of stress on speech and voice is of interest to researchers from many different disciplines including security, telecommunications, psychology, speech science, forensics and Human Computer Interaction (HCI). The aim of this work is to assess the impact of moderate stress on the speech signal. In order to do this, a dataset of laboratory-induced stress is required. While attempting to build this dataset it became apparent that reliably inducing measurable stress in a controlled environment, when speech is a requirement, is a challenging task. This work focuses on the use of a variety of stressors to elicit a stress response during tasks that involve speech content. Biosignal analysis (commercial Brain Computer Interfaces, eye tracking and skin resistance) is used to verify and quantify the stress response, if any. This thesis explains the basis of the author’s hypotheses on the elicitation of affectively-toned speech and presents the results of several studies carried out throughout the PhD research period. These results show that the elicitation of stress, particularly the induction of affectively-toned speech, is not a simple matter and that many modulating factors influence the stress response process. A model is proposed to reflect the author’s hypothesis on the emotional response pathways relating to the elicitation of stress with a required speech content. Finally the author provides guidelines and recommendations for future research on speech under stress. Further research paths are identified and a roadmap for future research in this area is defined.
Resumo:
Performance of any continuous speech recognition system is dependent on the accuracy of its acoustic model. Hence, preparation of a robust and accurate acoustic model lead to satisfactory recognition performance for a speech recognizer. In acoustic modeling of phonetic unit, context information is of prime importance as the phonemes are found to vary according to the place of occurrence in a word. In this paper we compare and evaluate the effect of context dependent tied (CD tied) models, context dependent (CD) and context independent (CI) models in the perspective of continuous speech recognition of Malayalam language. The database for the speech recognition system has utterance from 21 speakers including 11 female and 10 males. Our evaluation results show that CD tied models outperforms CI models over 21%.
Resumo:
The purpose of this study was to evaluate the current use of the Central Institute for the Deaf’s Speech Skills Worksheet by teacher of the deaf and speech-language pathologists, review the current literature on speech development in hearing-impaired children, and apply the findings to develop a more comprehensive Speech Skills Worksheet.
Resumo:
This paper discusses the early identification and assessment of children younger than six who were referred to the Central Institute for the Deaf Speech and Hearing Clinic.
Resumo:
Auditory-visual speech perception testing was completed using wordandconsonant-level stimuli in individuals with known degrees of dementia of theAlzheimer’s type. The correlations with the cognitive measures and the speechperception measures (A-only, V-only, AV, VE or AE) did not reveal significantrelationships.
Resumo:
Difficulty understanding speech in the presence of background noise is a common report among cochlear implant recipients. The purpose of this research is to evaluate speech processing options currently available in the Cochlear Nucleus 5 sound processor to determine the best option for improving speech recognition in noise.
Resumo:
This literature review examines the use of private speech among typically developing and hearing impaired children. This paper supports the view that private speech provides a self-regulatory function and guides behavior and problem-solving.