159 resultados para Pear
Resumo:
The cultivation of fruit plants from temperate climate in tropical or subtropical regions can be a good income alternative for the producer. However, due to the little existent information about cultivation of those fruit plants, the producers use imported techniques of other producing areas, or even an association of practices used for other fruit plants, pointing out the leaf spray fertilization of micronutrients without appropriate scientific base. In this context, the objective of this study was to verify the effect of the leaf spray fertilization of B and Zn on productivity and fruit quality of Japanese pear tree. The experiment was conducted from 2004 to 2005, in Ilha Solteira, in northwestern São Paulo State-Brazil. The climate is, according to the Köpppen Classification, tropical wet and dry (Aw). The 'Okusankichi' cultivar, grafted on Pyrus communis L. rootstock was used as well as doses of 110 g.ha-1 of B and 250 g.ha-1 of Zn in each application. The treatments were: T1. water, T2. boric acid, T3. zinc sulfate, T4. T2 + T3, T5. boric acid + urea + citric acid + EDTA, T6. zinc sulfate + urea + citric acid + EDTA, T7. T5 + T6, T8. boric acid + urea + citric acid + EDTA + sodium molibdate + sulfur + calcium chloride, T9. zinc sulfate + urea + citric acid + EDTA + Fe sulfate + Mn sulfate + Mg sulfate and, T10. T8+T9. A randomized blocks design was used and the averages were compared by Tukey test. In the first crop the mixture of boric acid with quelating agents were efficient to supply B to the plants and zinc sulfate plus quelating agents were efficient to increase Zn leaf content. However, the productivity and the fruit quality were not influenced by the leaf spray of B and Zn. In the second crop the leaf content of B and Zn and the productivity were not influenced by the leaf spray; the boric acid and the zinc sulfate with or without quelating agents increased the contents of total soluble solids and, the boric acid with or without quelating agents increased the contents of total titratable acidity.
Resumo:
The movement of sensitive stamens in flowers of the Plains Prickly Pear (Opuntia polyacantha) is described in detail along with the external and internal filament anatomy. The goals of this investigation were: (1) to provide a synthesis of floral phenology and determine whether this rather unique stamen movement is nastic or a tropism and (2) to conduct macro- and micro-morphological analyses of filaments to determine if there are anatomical traits associated with this movement. To better understand the internal and external structure in sensitive filaments of O. polyacantha, we performed comparative anatomical analyses in two additional species from the Opuntioideae with stamens lacking such sensitivity. The consistent unidirectional movement of stamens, independent of the area stimulated, indicates a thigmonastic response. This movement serves multiple purposes, from enhancing pollen presentation to facilitating cross-pollination, protecting pollen and preventing insects from robbing pollen. Anatomically, the sensitive and non-sensitive filaments exhibit different tissue organization. Cuticle thickness, presence of capsular structures, two layers of curved cells, and more and larger intercellular spaces are characteristic of sensitive filaments. A thin unicellular epidermal layer is characteristic in sensitive filaments versus 2-3 epidermal layers in non-sensitive filaments. Another striking feature in sensitive filaments is the presence of papillae and capsular structures. We believe that these elements are related to water mobility with subsequent contraction during the thigmonastic response. Capsular structures might have a role in fluid mobility according to the stimulus of the filaments. We hypothesize that the thigmonastic response is controlled by cells with elastic properties, as evidenced by the plasmolyzed curved and contracted cells in the filaments and the fact that the movement is activated by changes in cell turgor followed by contraction as a result of plasmolysis. © 2013 Elsevier GmbH.
Resumo:
The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.
Resumo:
Starch is the main form in which plants store carbohydrates reserves, both in terms of amounts and distribution among different plant species. Carbohydrates are direct products of photosynthetic activity, and it is well know that yield efficiency and production are directly correlated to the amount of carbohydrates synthesized and how these are distributed among vegetative and reproductive organs. Nowadays, in pear trees, due to the modernization of orchards, through the introduction of new rootstocks and the development of new training systems, the understanding and the development of new approaches regarding the distribution and storage of carbohydrates, are required. The objective of this research work was to study the behavior of carbohydrate reserves, mainly starch, in different pear tree organs and tissues: i.e., fruits, leaves, woody organs, roots and flower buds, at different physiological stages during the season. Starch in fruit is accumulated at early stages, and reached a maximum concentration during the middle phase of fruit development; after that, its degradation begins with a rise in soluble carbohydrates. Moreover, relationships between fruit starch degradation and different fruit traits, soluble sugars and organic acids were established. In woody organs and roots, an interconversion between starch and soluble carbohydrates was observed during the dormancy period that confirms its main function in supporting the growth and development of new tissues during the following spring. Factors as training systems, rootstocks, types of bearing wood, and their position on the canopy, influenced the concentrations of starch and soluble carbohydrates at different sampling dates. Also, environmental conditions and cultural practices must be considered to better explain these results. Thus, a deeper understanding of the dynamics of carbohydrates reserves within the plant could provide relevant information to improve several management practices to increase crop yield efficiency.
Resumo:
Pear fruits cv. 'Blanquilla', at various ripening stages, were studied under impact conditions. A 50-6-g spherical steel indentator, with a radius of curvature of 0-94 cm, was dropped on to the fruit from three heights: 4, 6 and 10 cm (0-0199, 0-0299 and 0-0499 J). The variables measured were analyzed. All variables were observed to be related to the impact energy except impact duration, which was related to the fruit firmness. Bruising correlated with impact energy when considering different heights, but not with any specific variable when studying the impact phenomenon at individual heights; however, there was a clear correlation between impact bruising and firmness. Three bruise shapes were observed, corresponding to preclimacteric, climacteric and postclimacteric fruits; a theory for this response is offered. According to the results, the impact response in postclimacteric pear fruits (with firmness values of less than 25 N, and a maturity index above 55) may be explained by the role played by the skin rather than by the pulp.
Resumo:
Fruit turgidity and firmness have shown to influence impact bruise susceptibility in apples and pears. Analysis of the impact response showed that stresses in the tissues are higher in turgid fruits, so they are more susceptible to bruising. A physical parameter, deformation at skin puncture, was able to detect fruit turgidity changes and showed to be related to bruise susceptibility.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. [11]
Resumo:
Errata slip.
Resumo:
Mode of access: Internet.
Resumo:
"May 28, 1908."
Resumo:
"Catalogue of pears": p. 271-283.