837 resultados para Pattern motion
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
OBJECTIVE: Imaging during a period of minimal myocardial motion is of paramount importance for coronary MR angiography (MRA). The objective of our study was to evaluate the utility of FREEZE, a custom-built automated tool for the identification of the period of minimal myocardial motion, in both a moving phantom at 1.5 T and 10 healthy adults (nine men, one woman; mean age, 24.9 years; age range, 21-32 years) at 3 T. CONCLUSION: Quantitative analysis of the moving phantom showed that dimension measurements approached those obtained in the static phantom when using FREEZE. In vitro, vessel sharpness, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were significantly improved when coronary MRA was performed during the software-prescribed period of minimal myocardial motion (p < 0.05). Consistent with these objective findings, image quality assessments by consensus review also improved significantly when using the automated prescription of the period of minimal myocardial motion. The use of FREEZE improves image quality of coronary MRA. Simultaneously, operator dependence can be minimized while the ease of use is improved.
Resumo:
PURPOSE: To examine the impact of spatial resolution and respiratory motion on the ability to accurately measure atherosclerotic plaque burden and to visually identify atherosclerotic plaque composition. MATERIALS AND METHODS: Numerical simulations of the Bloch equations and vessel wall phantom studies were performed for different spatial resolutions by incrementally increasing the field of view. In addition, respiratory motion was simulated based on a measured physiologic breathing pattern. RESULTS: While a spatial resolution of > or = 6 pixels across the wall does not result in significant errors, a resolution of < or = 4 pixels across the wall leads to an overestimation of > 20%. Using a double-inversion T2-weighted turbo spin echo sequence, a resolution of 1 pixel across equally thick tissue layers (fibrous cap, lipid, smooth muscle) and a respiratory motion correction precision (gating window) of three times the thickness of the tissue layer allow for characterization of the different coronary wall components. CONCLUSIONS: We found that measurements in low-resolution black blood images tend to overestimate vessel wall area and underestimate lumen area.
Resumo:
Observers are often required to adjust actions with objects that change their speed. However, no evidence for a direct sense of acceleration has been found so far. Instead, observers seem to detect changes in velocity within a temporal window when confronted with motion in the frontal plane (2D motion). Furthermore, recent studies suggest that motion-in-depth is detected by tracking changes of position in depth. Therefore, in order to sense acceleration in depth a kind of second-order computation would have to be carried out by the visual system. In two experiments, we show that observers misperceive acceleration of head-on approaches at least within the ranges we used [600-800 ms] resulting in an overestimation of arrival time. Regardless of the viewing condition (only monocular or monocular and binocular), the response pattern conformed to a constant velocity strategy. However, when binocular information was available, overestimation was highly reduced.
Resumo:
PURPOSE: To combine weighted iterative reconstruction with self-navigated free-breathing coronary magnetic resonance angiography for retrospective reduction of respiratory motion artifacts. METHODS: One-dimensional self-navigation was improved for robust respiratory motion detection and the consistency of the acquired data was estimated on the detected motion. Based on the data consistency, the data fidelity term of iterative reconstruction was weighted to reduce the effects of respiratory motion. In vivo experiments were performed in 14 healthy volunteers and the resulting image quality of the proposed method was compared to a navigator-gated reference in terms of acquisition time, vessel length, and sharpness. RESULT: Although the sampling pattern of the proposed method contained 60% more samples with respect to the reference, the scan efficiency was improved from 39.5 ± 10.1% to 55.1 ± 9.1%. The improved self-navigation showed a high correlation to the standard navigator signal and the described weighting efficiently reduced respiratory motion artifacts. Overall, the average image quality of the proposed method was comparable to the navigator-gated reference. CONCLUSION: Self-navigated coronary magnetic resonance angiography was successfully combined with weighted iterative reconstruction to reduce the total acquisition time and efficiently suppress respiratory motion artifacts. The simplicity of the experimental setup and the promising image quality are encouraging toward future clinical evaluation. Magn Reson Med 73:1885-1895, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
This project addresses methodological and technological challenges in the development of multi-modal data acquisition and analysis methods for the representation of instrumental playing technique in music performance through auditory-motor patterning models. The case study is violin playing: a multi-modal database of violin performances has been constructed by recording different musicians while playing short exercises on different violins. The exercise set and recording protocol have been designed to sample the space defined by dynamics (from piano to forte) and tone (from sul tasto to sul ponticello), for each bow stroke type being played on each of the four strings (three different pitches per string) at two different tempi. The data, containing audio, video, and motion capture streams, has been processed and segmented to facilitate upcoming analyses. From the acquired motion data, the positions of the instrument string ends and the bow hair ribbon ends are tracked and processed to obtain a number of bowing descriptors suited for a detailed description and analysis of the bow motion patterns taking place during performance. Likewise, a number of sound perceptual attributes are computed from the audio streams. Besides the methodology and the implementation of a number of data acquisition tools, this project introduces preliminary results from analyzing bowing technique on a multi-modal violin performance database that is unique in its class. A further contribution of this project is the data itself, which will be made available to the scientific community through the repovizz platform.
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the “correct” size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues.
Resumo:
As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved [1, 2]. Previous evidence shows that the human visual system accounts for the distance the observer has walked [3,4] and the separation of the eyes [5-8] when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.
Resumo:
Analysis of human behaviour through visual information has been a highly active research topic in the computer vision community. This was previously achieved via images from a conventional camera, but recently depth sensors have made a new type of data available. This survey starts by explaining the advantages of depth imagery, then describes the new sensors that are available to obtain it. In particular, the Microsoft Kinect has made high-resolution real-time depth cheaply available. The main published research on the use of depth imagery for analysing human activity is reviewed. Much of the existing work focuses on body part detection and pose estimation. A growing research area addresses the recognition of human actions. The publicly available datasets that include depth imagery are listed, as are the software libraries that can acquire it from a sensor. This survey concludes by summarising the current state of work on this topic, and pointing out promising future research directions.
Resumo:
In this article, we explore whether cross-linguistic differences in grammatical aspect encoding may give rise to differences in memory and cognition. We compared native speakers of two languages that encode aspect differently (English and Swedish) in four tasks that examined verbal descriptions of stimuli, online triads matching, and memory-based triads matching with and without verbal interference. Results showed between-group differences in verbal descriptions and in memory-based triads matching. However, no differences were found in online triads matching and in memory-based triads matching with verbal interference. These findings need to be interpreted in the context of the overall pattern of performance, which indicated that both groups based their similarity judgments on common perceptual characteristics of motion events. These results show for the first time a cross-linguistic difference in memory as a function of differences in grammatical aspect encoding, but they also contribute to the emerging view that language fine tunes rather than shapes perceptual processes that are likely to be universal and unchanging.