990 resultados para Pathogen-driven selection
Resumo:
Environmental shifts and lifestyle changes may result in formerly adaptive traits becoming non-functional or maladaptive. The subsequent decay of such traits highlights the importance of natural selection for adaptations, yet its causes have rarely been investigated. To study the fate of formerly adaptive traits after lifestyle changes, we evaluated sexual traits in five independently derived asexual lineages, including traits that are specific to males and therefore not exposed to selection. At least four of the asexual lineages retained the capacity to produce males that display normal courtship behaviours and are able to fertilize eggs of females from related sexual species. The maintenance of male traits may stem from pleiotropy, or from these traits only regressing via drift, which may require millions of years to generate phenotypic effects. By contrast, we found parallel decay of sexual traits in females. Asexual females produced altered airborne and contact signals, had modified sperm storage organs, and lost the ability to fertilize their eggs, impeding reversals to sexual reproduction. Female sexual traits were decayed even in recently derived asexuals, suggesting that trait changes following the evolution of asexuality, when they occur, proceed rapidly and are driven by selective processes rather than drift.
Resumo:
El fuego bacteriano, causado por Erwinia amylovora, es una enfermedad muy importante a nivel comercial y económico porque afecta a plantas de la familia de las rosáceas y es especialmente agresiva en manzano (Pyrus malus) y peral (Pyrus communis), así como en plantas ornamentales (Crataegus, Cotoneaster o Pyracantha). Esta enfermedad está distribuida por todo el mundo en zonas climáticas templadas de Amércia del Norte, Nueva Zelanda, Japón, Israel, Turquí y Europa. En España, el fuego bacteriano fue detectado por primera vez en 1995 en el norte del País (Euskadi) y más tarde en nuevos focos aparecidos en otras áreas. La enfermedad puede ser controlada comercialmente mediante la aplicación de pesticidas quimicos (derivados de cobre, antibioticos). Sin embargo, muchos de los productos químicos presentan baja actividad o causan fitotoxicidad, y la estreptomicina, el producto más eficaz, esta prohibido en muchos países, incluyendo España. Por tanto, en ausencia de apropiados agentes químicos, el control biológico se contempla como una buena alternativa. En el presente trabajo, un agente de control biológico, Pseudomonas fluorescens EPS62e, ha sido seleccionada de entre 600 aislados de las especies P. fluorescens y Pantoea agglomerans obtenidos de flores, frutos y hojas de plantas de la familia de las rosáceas durante una prospección llevada a cabo en varias áreas geográficas de España. La cepa ha sido seleccionada por su capacidad de suprimir la infecciones producidas por E. amylovora frutos inmaduros, flores y brotes de peral en condiciones de ambiente controlado, presentando unos niveles de control similares a los obtenidos mediante el control químico usando derivados de cobre o antibióticos. La cepa además ha mostrado la capacidad de colonizar y sobrevivir en flores y heridas producidas en frutos inmaduros en condiciones de ambiento controlado pero también en flores en condiciones de campo. La exclusión de E. amylovora medinate la colonización de la superficie, el consumo de nutrientes, y la interacción entre las células del patógeno y del agente de biocontrol es la principal causa de la inhibición del fuego bacteriano por la cepa EPS62e. Estas características constituyen aspectos interesantes para un desarrollo efectivo de la cepa EPS62e como un agente de biocontrol del fuego bacteriano en condiciones comerciales.
Resumo:
Seamless phase II/III clinical trials are conducted in two stages with treatment selection at the first stage. In the first stage, patients are randomized to a control or one of k > 1 experimental treatments. At the end of this stage, interim data are analysed, and a decision is made concerning which experimental treatment should continue to the second stage. If the primary endpoint is observable only after some period of follow-up, at the interim analysis data may be available on some early outcome on a larger number of patients than those for whom the primary endpoint is available. These early endpoint data can thus be used for treatment selection. For two previously proposed approaches, the power has been shown to be greater for one or other method depending on the true treatment effects and correlations. We propose a new approach that builds on the previously proposed approaches and uses data available at the interim analysis to estimate these parameters and then, on the basis of these estimates, chooses the treatment selection method with the highest probability of correctly selecting the most effective treatment. This method is shown to perform well compared with the two previously described methods for a wide range of true parameter values. In most cases, the performance of the new method is either similar to or, in some cases, better than either of the two previously proposed methods.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed.
Resumo:
The geographically constrained distribution of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) in southeast Asian populations suggests that both viral and host genetics may influence disease risk. Although susceptibility loci have been mapped within the human genome, the role of viral genetics in the focal distribution of NPC remains an enigma. Here we report a molecular phylogenetic analysis of an NPC-associated viral oncogene, LMP1, in a large panel of EBV isolates from southeast Asia and from Papua New Guinea, Africa, and Australia, regions of the world where NPC is and is not endemic, respectively. This analysis revealed that LMP1 sequences show a distinct geographic structure, indicating that the southeast Asian isolates have evolved as a lineage distinct from those of Papua New Guinea, African, and Australian isolates. Furthermore, a likelihood ratio test revealed that the C termini of the LMP1 sequences of the southeast Asian lineage are under significant positive selection pressure, particularly at some sites within the C-terminal activator regions. We also present evidence that although the N terminus and transmembrane region of LMP1 have undergone recombination, the C-terminal region of the gene has evolved without any history of recombination. Based on these observations, we speculate that selection pressure may be driving the LMP1 sequences in virus isolates from southeast Asia towards a more malignant phenotype, thereby influencing the endemic distribution of NPC in this region.
Resumo:
In this project an optimal pose selection method for the calibration of an overconstrained Cable-Driven Parallel robot is presented. This manipulator belongs to a subcategory of parallel robots, where the classic rigid "legs" are replaced by cables. Cables are flexible elements that bring advantages and disadvantages to the robot modeling. For this reason, there are many open research issues, and the calibration of geometric parameters is one of them. The identification of the geometry of a robot, in particular, is usually called Kinematic Calibration. Many methods have been proposed in the past years for the solution of the latter problem. Although these methods are based on calibration using different kinematic models, when the robot’s geometry becomes more complex, their robustness and reliability decrease. This fact makes the selection of the calibration poses more complicated. The position and the orientation of the endeffector in the workspace become important in terms of selection. Thus, in general, it is necessary to evaluate the robustness of the chosen calibration method, by means, for example, of a parameter such as the observability index. In fact, it is known from the theory, that the maximization of the above mentioned index identifies the best choice of calibration poses, and consequently, using this pose set may improve the calibration process. The objective of this thesis is to analyze optimization algorithms which aim to calculate an optimal choice of poses both in quantitative and qualitative terms. Quantitatively, because it is of fundamental importance to understand how many poses are needed. Not necessarily a greater number of poses leads to a better result. Qualitatively, because it is useful to understand if the selected combination of poses actually gives additional information in the process of the identification of the parameters.
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
Transgenic Citrus sinensis (L.) Osb. cv. Hamlin plants expressing the hrpN gene were obtained by Agrobacterium tumefaciens (Smith and Towns) Conn-mediated transformation. hrpN encodes a harpin protein, which elicits the hypersensitive response and systemic acquired resistance in plants. The gene construct consisted of gst1, a pathogen-inducible promoter, a signal peptide for protein secretion to the apoplast, the selection genes nptI1 or aacC1 and the Nos terminator. The function of gst1 in citrus was evaluated in transgenic C. sinensis cv. Valencia harboring the reporter gene uidA (gus) driven by this promoter. Histochemical analysis for gus revealed that gst1 is activated in citrus leaves by both wounding and inoculation with Xanthomonas axonopodis Starr and Garces pv. citri (Hasse) Vauterin et al. Genetic transformation was confirmed by Southern blot hybridization in eight cv. Hamlin acclimatized plants. RT-PCR confirmed hrpN gene expression in seven cv. Hamlin transgenic lines before pathogen inoculation. Some hrpN transgenic lines showed severe leaf curling and abnormal growth. Six hrpN transgenic lines were propagated and evaluated for susceptibility to X axonopodis pv. citri. RT-PCR confirmed gene expression in all six hrpN transgenic lines after pathogen inoculation. Several of the hrpN transgenic lines showed reduction in susceptibility to citrus canker as compared with non-transgenic plants. One hrpN transgenic line exhibited normal vegetative development and displayed very high resistance to the pathogen, estimated as up to 79% reduction in disease severity. This is the first report of genetic transformation of citrus using a pathogen-inducible promoter and the hrpN gene. Further evaluations of the transgenic plants under field conditions are planned. Nevertheless, the evidence to date suggests that the hrpN gene reduces the susceptibility of citrus plants to the canker disease. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fogo selvagem (FS), the endemic form of pemphigus foliaceus (PF), is characterized by pathogenic anti-desmoglein 1 (DSG1) autoantibodies. To study the etiology of FS, hybridomas that secrete either IgM or IgG (predominantly IgG1 subclass) autoantibodies were generated from the B cells of eight FS patients and one individual 4 years before FS onset, and the H and L chain V genes of anti-DSG1 autoantibodies were analyzed. Multiple lines of evidence suggest that these anti-DSG1 autoantibodies are antigen selected. First, clonally related sets of anti-DSG1 hybridomas characterize the response in individual FS patients. Second, H and L chain V gene use seems to be biased, particularly among IgG hybridomas, and third, most hybridomas are mutants and exhibit a bias in favor of CDR (complementary determining region) amino acid replacement (R) mutations. Strikingly, pre-FS hybridomas also exhibit evidence of antigen selection, including an overlap in V(H) gene use and shared multiple R mutations with anti-DSG1 FS hybridomas, suggesting selection by the same or a similar antigen. We conclude that the anti-DSG1 response in FS is antigen driven and that selection for mutant anti-DSG1 B cells begins well before the onset of disease.
Resumo:
Objectives We evaluated demographic, clinical, and angiographic factors influencing the selection of coronary artery bypass graft (CABG) surgery versus percutaneous coronary intervention (PCI) in diabetic patients with multivessel coronary artery disease (CAD) in the BARI 2D (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes) trial. Background Factors guiding selection of mode of revascularization for patients with diabetes mellitus and multivessel CAD are not clearly defined. Methods In the BARI 2D trial, the selected revascularization strategy, CABG or PCI, was based on physician discretion, declared independent of randomization to either immediate or deferred revascularization if clinically warranted. We analyzed factors favoring selection of CABG versus PCI in 1,593 diabetic patients with multivessel CAD enrolled between 2001 and 2005. Results Selection of CABG over PCI was declared in 44% of patients and was driven by angiographic factors including triple vessel disease (odds ratio [OR]: 4.43), left anterior descending stenosis >= 70% (OR: 2.86), proximal left anterior descending stenosis >= 50% (OR: 1.78), total occlusion (OR: 2.35), and multiple class C lesions (OR: 2.06) (all p < 0.005). Nonangiographic predictors of CABG included age >= 65 years (OR: 1.43, p = 0.011) and non-U.S. region (OR: 2.89, p = 0.017). Absence of prior PCI (OR: 0.45, p < 0.001) and the availability of drug-eluting stents conferred a lower probability of choosing CABG (OR: 0.60, p = 0.003). Conclusions The majority of diabetic patients with multivessel disease were selected for PCI rather than CABG. Preference for CABG over PCI was largely based on angiographic features related to the extent, location, and nature of CAD, as well as geographic, demographic, and clinical factors. (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes [BARI 2D]; NCT00006305) (J Am Coll Cardiol Intv 2009;2:384-92) (C) 2009 by the American College of Cardiology Foundation
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.