927 resultados para Passing.
Resumo:
Based on the Huygens-Fresnel diffraction integral and Fourier transform, propagation expression of a chirped Gaussian pulse passing through a hard-edged aperture is derived. Intensity distributions of the pulse with different frequency chirp in the near-field and far-field are analyzed in detail by numerical calculations. In the near-field, amplitudes of the intensity peaks generated by the modulation of the hard-edged aperture decrease with increasing the frequency chirp, which results in the improving of the beam uniformity. A physical explanation for the smoothing effect brought by increasing the frequency chirp is given. The smoothing effect is achieved not only in the pulse with Gaussian transverse profile but also in the pulse with Hermite-Gaussian transverse profile when the frequency chirp increases. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The rate of injuries sustained by red king crab, Paralithodes camtschaticus, during passage under several types of bottom trawl footropes was examined using a modified bottom trawl in Bristol Bay, Alaska. Crabs were recaptured and examined for injuries after passing under each of three trawl footropes representing those commonly used in the bottom trawl fisheries of the eastern Bering Sea. Using the injury rate from tows with a floated footrope which minimized crab contact to account for handling injuries, injury rates of 5, 7, and 10% were estimated for crabs passing under the three commercial trawl footropes.
Resumo:
This paper describes an investigation into the effect that passing wakes have on a separation bubble that exists on the pressure surface and near the leading edge of a low pressure turbine blade. Previous experimental studies have shown that the behaviour of this separation is strongly incidence dependent and that it responds to its disturbance environment. The results presented in this paper examine the effect of wake passing in greater detail. Two dimensional, Reynolds averaged, numerical predictions are first used to examine qualitatively the unsteady interaction between the wakes and the separation bubble. The separation is predicted to consist of spanwise vortices whose development is in phase with the wake passing. However, comparison with experiments shows that the numerical predictions exaggerate the coherence of these vortices and also overpredict the time-averaged length of the separation. Nonetheless, experiments strongly suggest that the predicted phase locking of the vortices in the separation onto the wake passing is physical.
Resumo:
Bessel beam can overcome the limitation of the Rayleigh range of Gaussian beam with the same spot size propagation without any spreading due to diffraction, which is considered as an useful function in guiding particles in the next generation of optical tweezers. The mathematical description of the Bessel beam generated by an axicon is usually based on the Fresnel diffraction integral theory. In this paper, we deduce another type of analytic expression suitable for describing the beam profile generated from the axicon illuminated by the Gaussian beam based on the interferential theory. Compared with the Fresnel diffraction integral theory, this theory does not use much approximation in the process of mathematical analysis. According to the derived expression, the beam intensity profiles at any positions behind the axicon can be calculated not just restricted inside the cross region as the Fresnel diffraction integral theory gives. The experiments prove that the theoretical results fit the experimental results very well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The analytical solution of a multidimensional Langevin equation at the overdamping limit is obtained and the probability of particles passing over a two-dimensional saddle point is discussed. These results may break a path for studying further the fusion in superheavy elements synthesis.