16 resultados para Passerat
Resumo:
The soil heat flux and soil thermal diffusivity are important components of the surface energy balance, especially in ar id and semi-arid regions. The obj ective of this work was to carry out to estimate the soil heat flux from th e soil temperature measured at a single depth, based on the half-order time derivative met hod proposed by Wang and Bras (1999), and to establish a method capable of es timating the thermal diffusivity of the soil, based on the half order derivative, from the temporal series of soil temperature at two depths. The results obtained in the estimates of soil heat flux were compared with the values of soil heat flux measured through flux plates, and the thermal di ffusivity estimated was compared with the measurements carried out in situ. The results obtained showed excellent concordance between the estimated and measured soil heat flux, with correlation (r), coeffici ent of determination (R 2 ) and standard error (W/m 2 ) of: r = 0.99093, R 2 = 0.98194 and error = 2.56 (W/m 2 ) for estimated period of 10 days; r = 0,99069, R 2 = 0,98147 and error = 2.59 (W/m 2 ) for estimated period of 30 days; and r = 0,98974, R 2 = 0,97958 and error = 2.77 (W/m 2 ) for estimated period of 120 days. The values of thermal di ffusivity estimated by the proposed method showed to be coherent and consis tent with in situ measured va lues, and with the values found in the literature usi ng conventional methods.