826 resultados para Particles aggregation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed numerical simulations of three dimensional suspensions of active particles to characterize the capabilities of the hydrodynamic stresses induced by active swimmers to promote global order and emergent structures in active suspensions. We have considered squirmer suspensions embedded in a fluid modeled under a Lattice Boltzmann scheme. We have found that active stresses play a central role to decorrelate the collective motion of squirmers and that contractile squirmers develop significant aggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of transparent exopolymer particles (TEP) in response to several environmental variables was studied in 2 mesocosm experiments. The first (Expt 1) examined a gradient of 4 nutrient levels; the second (Expt 2) examined different conditions of silicate availability and zooplankton presence. Tanks were separated in 2 series, one subjected to turbulence and the other not influenced by turbulence. In tanks with nutrient addition, TEP were rapidly formed, with net apparent production rates closely linked to chl a growth rates, suggesting that phytoplankton cells were actively exuding TEP precursors. High nutrient availability increased the absolute concentration of TEP; however, the relative quantity of TEP produced was found to be lower, as TEP concentration per unit of phytoplankton biomass was inversely related to the initial nitrate dose. In Expt 1, an increase in TEP volume (3 to 48 µm equivalent spherical diameter) with nutrient dose was observed; in Expt 2, both silicate addition and turbulence enhanced TEP production and favored aggregation to larger TEP (>48 µm). The presence of zooplankton lowered TEP concentration and changed the size distribution of TEP, presumably by grazing on TEP or phytoplankton. For lower nutrient concentrations, the ratio of particulate organic carbon (POC) to particulate organic nitrogen (PON) followed the Redfield ratio. At higher nutrient conditions, when nutrients were exhausted during the post-bloom, a decoupling of carbon and nitrogen dynamics occurred and was correlated to TEP formation, with a large flow of carbon channeled toward the TEP pool in turbulent tanks. TEP accounted for an increase in POC concentration of 50% in high-nutrient and turbulent conditions. The study of TEP dynamics is crucial to understanding the biogeochemical response of the aquatic system to forcing variables such as nutrient availability and turbulence intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of iron-ore particles on the propagule release and growth of Sargassum vulgare C. Agardh was tested under treatments with different concentrations of iron-ore particles: 0.1, 1.0, 10.0 g.L-1 and a solution of 10.0 g.L-1 of filtered iron-ore. Filtered seawater was used as control. Photosynthesis vs. irradiance (P-I) curves were calculated for S. vulgare in the presence of iron-ore and in seawater. There was no significant difference in the number of propagules released by the receptacles or in the percentage of zygote formation among the treatments. The released propagules acted like aggregation centers for the particles, those more heavily coated with iron (10.0 g.L-1) exhibiting the highest sinking velocity (32.6 ± 9.8 mm.s-1). No difference in the percentage of embryo survival was detected during the first week in culture. After four weeks the embryos grew in all treatments. Maximum frond development (5.3 ± 0.8 mm) was observed in treatment of seawater enriched with Provasoli's medium (PES) while initial filoids did not develop in three treatments without PES and with iron-ore (0.1 g.L-1, 1.0 g.L-1 and 10.0 g.L-1). The values for Pmax, alpha and respiration showed no significant differences between the P-I curves. The calculated value for I K was 106.26 µmol.m-2.s-1 to the control curve and 981.49 µmol.m-2.s-1 to the iron-ore curve. The results indicate that the iron-ore particles in high concentration reduce the growth of S. vulgare as they recovered the embryos, juveniles and young plants. In contrast, the presence of the particles did not affect the release of gametes, percentage of zygote formation or the percentage of embryo survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan (alpha alpha-(1-4)-amino-2-deoxy-beta beta-D-glucan) is a deacetylated form of chitin, a polysaccharide from crustacean shells. Its unique characteristics, such as positive charge, biodegradability, biocompatibility, nontoxicity, and rigid structure, make this macromolecule ideal for an oral vaccine delivery system. We prepared reverse-phase evaporation vesicles (REVs) sandwiched by chitosan (Chi) and polyvinylic alcohol (PVA). However, in this method, there are still some problems to be circumvented related to protein stabilization. During the inverted micelle phase of protein nanoencapsulation, hydrophobic interfaces are expanded, leading to interfacial adsorption, followed by protein unfolding and aggregation. Here, spectroscopic and immunological techniques were used to ascertain the effects of the Hoffmeister series ions on diphtheria toxoid (Dtxd) stability during the inverted micelle phase. A correlation was established between the salts used in aqueous solutions and the changes in Dtxd solubility and conformation. Dtxd alpha alpha-helical content was quite stable, which led us to conclude that encapsulation occurred without protein aggregation or without exposition of hydrophobic residues. Dtxd aggregation was 98% avoided by the kosmotropic, PO

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of aggregation of tetraethoxysilane (TEOS)-derived silica sols, produced by acid-catalyzed and ultrasound-stimulated hydrolysis, were studied by 'in situ' measurements of small-angle X-ray scattering (SAXS) at the temperatures 40 degreesC, 60 degreesC and 70 degreesC. The results were analyzed in terms of the evolution with time (t) of the SAXS intensity probing the mass fractal characteristics of the system, the average radius of gyration (Rc,) of the clusters and the number of primary particles per cluster. The aggregation process yields mass fractal structures which exhibit a scattering exponent (alpha) practically equal to 2, in the probed length scale range (5.3 nm < 1/q < 0.22 nm), beneath and even far beyond the gel point. This suggests that a is a direct measure of the real mass fractal dimension (D) of the structure. The precursor sol (pH = 2) exhibits I nm mean sized clusters with mass fractal dimension D similar to 1.9. Increasing the pH to 4.5, the cluster mean size and the number of primary particles per cluster increase but the system keeps a more opened structure (D similar to 1.4). In the first aggregation stages, D increases up to similar to2 by incorporating primary particles to the clusters without changing their mean size. From this stage, the aggregation progresses following a thermally activated scaling law well described by R-G similar tot(1/D) in all cases. This is indicative of a diffusion-controlled cluster-cluster aggregation process. The activation energy of the process was found to be 91.7 kJ/mol. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermostimulated sol-gel transition in a system prepared by mixing a ZrOCl(2) acidified solution to a hot H(2)SO(4) aqueous solution was studied by dynamic theological measurements and quasi-elastic light scattering. The effect of temperature and of molar ratio R(S) = [Zr]/[SO(4)] on the gelation kinetics was analyzed using the mass fractal aggregate growth model. This study shows that the linear growth of aggregates occurs at the early period of transformation, while bidimensional growth occurs at the advanced stage. The bidimensional growth can be shifted toward monodimensional growth by decreasing the aggregation rate by controlling the temperature and/or molar ratio R(S). EXAFS and Raman results gave evidence that the linear chain growth is supported by covalent sulfate bonding between primary building blocks. At the advanced stage of aggregation, the assembly of linear chains through hydrogen bonding gave rise to the growth of bidimensional particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the industrial revolution, the ocean has absorbed around one third of the anthropogenic CO2, which induced a profound alteration of the carbonate system commonly known as ocean acidification. Since the preindustrial times, the average ocean surface water pH has fallen by 0.1 units, from approximately 8.2 to 8.1 and a further decrease of 0.4 pH units is expected for the end of the century. Despite their microscopic size, marine diatoms are bio-geo-chemically a very important group, responsible for the export of massive amount of carbon to deep waters and sediments. The knowledge of the potential effects of ocean acidification on the phytoplankton growth and on biological pump is still at its infancy. This study wants to investigate the effect of ocean acidification on the growth of the diatom Skeletonema marinoi and on its aggregation, using a mechanistic approach. The experiment consisted of two treatments (Present and Future) representing different pCO2 conditions and two sequential experimental phases. During the cell growth phase a culture of S. marinoi was inoculated into transparent bags and the effect of ocean acidification was studied on various growth parameters, including DOC and TEP production. The aggregation phase consisted in the incubation of the cultures into rolling tanks where the sinking of particles through the water column was simulated and aggregation promoted. Since few studies investigated the effect of pH on the growth of S. marinoi and none used pH ranges that are compatible with the OA scenarios, there were no baselines. I have shown here, that OA does not affect the cell growth of S. marinoi, suggesting that the physiology of this species is robust in respect to the changes in the carbonate chemistry expected for the end of the century. Furthermore, according to my results, OA does not affect the aggregation of S. marinoi in a consistent manner, suggesting that this process has a high natural variability but is not influenced by OA in a predictable way. The effect of OA was tested over a variety of factors including the number of aggregates produced, their size and sinking velocity, the algal, bacterial and TEP content. Many of these variables showed significant treatment effects but none of these were consistent between the two experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Zielsetzung der Arbeit besteht darin, neue Ansätze zur Herstellung strukturierter Kompositpartikel in wässrigem Medium zu entwickeln, welche als die Bildung genau definierter heterogener Strukturen in Kolloidsystemen angesehen werden können. Im Allgemeinen wurden zwei verschiedene Herangehensweisen entwickelt, die sich aufgrund des Ursprungs der gebildeten heterogenen Strukturen unterscheiden: Heterogenität oder Homogenität. Der Erste Ansatz basiert auf der Aggregation heterogener Phasen zur Bildung strukturierter Kolloidpartikel mit Heterogenität in der zugrunde liegenden Chemie, während der Zweite Ansatz auf der Bildung heterogener Phasen in Kolloidpartikeln aus homogenen Mischungen heraus durch kontrollierte Phasenseparation beruht.rnIm Detail beschäftigt sich der erste Teil der Dissertation mit einer neuen Herstellungsmethode für teilkristalline Komposit-Kolloidpartikel mit hoher Stabilität basierend auf der Aggregation flüssiger Monomertropfen an teilkristalline Polyacrylnitrilpartikel. Nach der Aggregation wurden hochstabile Dispersionen bestehend aus strukturierten, teilkristallinen Kompositpartikeln durch freie radikalische Polymerisation erhalten, während ein direktes Mischen der PAN Dispersionen mit Methacrylat-Polymerdispersionen zur unmittelbaren Koagulation führte. In Abhängigkeit von der Glastemperatur des Methacrylatpolymers führt die anschließende freie radikalische Polymerisation zur Bildung von Rasberry oder Kern-Schale Partikeln. Die auf diese Weise hergestellten Partikel sind dazu in der Lage, kontinuierliche Filme mit eingebetteten teilkristallinen Phasen zu bilden, welche als Sauerstoffbarriere Anwendung finden können.rnDer zweite Teil der Dissertation beschreibt eine neue Methode zur Herstellung strukturierter Duroplast-Thermoplast Komposit-Kolloidpartikel. Die Bildung eines Duroplastnetzwerks mit einer thermoplastischen Hülle wurde in zwei Schritten durch verschiedene, separate Polymerisationsmechanismen erreicht: Polyaddition und freie radikalische Polymerisation. Es wurden stabile Miniemulsionen erhalten, welche aus Bisphenol-F basiertem Epoxidharz, Phenalkamin-basiertem Härter und Vinlymonomere bestehen. Sie wurden durch Ultraschall mit nachfolgender Härtung bei verschiedenen Temperaturen als sogenannte Seed-Emulsionen hergestellt. Weitere Vinylmonomere wurden hinzugegeben und nachfolgend polymerisiert, was zur Bildung von Kern-Schale, beziehungsweise Duroplast-Thermoplast Kolloidpartikeln führte. Dabei findet in beiden Fällen zwischen der duroplastischen und der thermoplastischen Phase eine chemisch induzierte Phasenseparation statt, welche essenziell für die Bildung heterogener Strukturen ist. Die auf diese Weise hergestellten Kompositpartikel sind dazu in der Lage, transparente Filme zu bilden, welche unter geeigneten Bedingungen deutlich verbesserte mechanische Eigenschaften im Vergleich zu reinen Duroplastfilmen bereitstellen.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal Nano-apatite Particles with Active Luminescent and Magentic Properties for Biotechnology Applications. The synthesis of functional nano-materials is a burgeoning field that has produced remarkable and consistent breakthroughs over the last two decades. Individual particles have become smaller and shown potential for well defined functionality. However, there are still unresolved problems, a primary one being the loss of functionality and novelty due to uncontrolled aggregation driven by surface energy considerations. As such the first design criteria to harness the true potential of nanoparticles is to prevent unwanted agglomeration by: (1) improving, and, if possible, (2) controlling aggregation behavior. This requires specific knowledge of the chemistry of the immediate locale of the intended application; especially for biologically relevant applications. The latter criterion is also application driven but should be considered, generally, to diversify the range of functional properties that can be achieved. We have now reason to believe that such a novel system with multifunctional capabilities can be synthesized rather conveniently and have far reaching impact in biotechnology and other applications in the near future. We are presently experimenting with the syntheses of spheroidal, metal-doped, colloidal apatite nano-particles (~10 nm) for several potential biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipophorin is the major lipid carrier in insects, but various observations indicate that lipophorin is also involved in immune reactions. To examine a possible role of lipophorin in defence reactions, we mixed hemolymph plasma from Galleria mellonella with LPS and noticed that lipophorin forms detergent-insoluble aggregates, while most other plasma proteins are not affected. Lipophorin particles isolated by low-density gradient centrifugation retained LPS-induced aggregation properties, which suggested to us that these immune-reactive particles are able to recognise LPS and respond by forming insoluble aggregates. Antibodies against LPS-binding proteins, such as immulectin-2 and beta-1,3-glucan binding protein, cross-reacted with proteins associated with purified lipophorin particles. To examine whether LPS-mediated aggregates inactivate LPS, we added LPS-lipophorin mixtures to purified lipophorin particles and monitored aggregate formation. Under these conditions lipophorin did not form insoluble aggregates, which indicates that lipophorin particles sequester LPS into non-toxic aggregates. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.