975 resultados para Parasitoid-host-interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diachasmimorpha kraussii (Hymenoptera: Braconidae: Opiinae) is a koinobiont larval parasitoid of dacine fruit flies of the genus Bactrocera (Diptera: Tephritidae) in its native range (Australia, Papua New Guinea, Solomon Islands). The wasp is a potentially important control agent for pest fruit flies, having been considered for both classical and inundative biological control releases. I investigated the host searching, selection and utilisation mechanisms of the wasp against native host flies within its native range (Australia). Such studies are rare in opiine research where the majority of studies, because of the applied nature of the research, have been carried out using host flies and environments which are novel to the wasps. Diachasmimorpha kraussii oviposited equally into maggots of four fruit fly species, all of which coexist with the wasp in its native range (Australia), when tested in a choice trial using a uniform artificial diet media. While eggs laid into Bactrocera tryoni and B. jarvisi developed successfully through to adult wasps, eggs laid into B. cucumis and B. cacuminata were encapsulated. These results suggest that direct larval cues are not an important element in host selection by D. kraussii. Further exploring how D. kraussii locates suitable host larvae, I investigated the role of plant cues in host searching and selection. This was examined in a laboratory choice trial using uninfested fruit or fruit infested with either B. tryoni or B. jarvisi maggots. The results showed a consistent preference ranking among infested fruits by the wasp, with guava and peach most preferred, but with no response to uninfested fruits. Thus, it appears the wasp uses chemical cues emitted in response to fruit fly larval infestation for host location, but does not use cues from uninfested fruits. To further tease apart the role of (i) suitable and non-suitable maggots, (ii) infested and uninfested fruits of different plant species, and (iii) adult flies, in wasp host location and selection, I carried out a series of behavioural tests where I manipulated these attributes in a field cage. These trials confirmed that D. kraussii did not respond to cues in uninfested fruits, that there were consistent preferences by the wasps for different maggot infested fruits, that fruit preference did not vary depending on whether the maggots were physiologically suitable or not suitable for wasp offspring development, and finally, that adult flies appear to play a secondary role as indicators of larval infestation. To investigate wasp behaviour in an unrestrained environment, I concurrently observed diurnal foraging behaviours of both the wasp and one of its host fly in a small nectarine orchard. Wasp behaviour, both spatially and temporally, was not correlated with adult fruit fly behaviour or abundance. This study reinforced the point that infested fruit seems to be the primary cue used by foraging wasps. Wasp and fly feeding and mating was not observed in the orchard, implying these activities are occurring elsewhere. It is highly unlikely that these behaviours were happening within the orchard during the night as both insects are diurnal. As the final component of investigating host location, I carried out a habitat preference study for the wasp at the landscape scale. Using infested sentinel fruits, I tested the parasitism rate of B. tryoni in eucalyptus sclerophyll forest, rainforest and suburbia in South East Queensland. Although, rainforest is the likely endemic habitat of both B. tryoni and D. kraussii, B. tryoni abundance is significantly greater in suburban environments followed by eucalyptus sclerophyll forest. Parasitism rate was found to be higher in suburbia than in the eucalyptus sclerophyll forest, while no parasitism was recorded in the rainforest. This result suggests that wasps orient within the landscape towards areas of high host density and are not restricted by habitat types. Results from the different experiments suggest that host searching, selection and utilisation behaviour of D. kraussii are strongly influenced by cues associated with fruit fly larval feeding. Cues from uninfested fruits, the host larvae themselves, and the adult host flies play minimal roles. The discussion focuses on the fit of D. kraussii to Vinson’s classical parasitoid host location model and the implications of results for biological control, including recommendations for host and plant preference screening protocols and release regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts. 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively. 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato. 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae. 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present. 6 We conclude that herbivore-induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly-identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between the immature stages of Diadegma semiclausum, an endolarval parasitoid of Plutella xylostella, and the fungal entomopathogen Beauveria bassiana were investigated in the laboratory. Detrimental effects of B. bassiana on D. semiclausum cocoon production and adult parasitoid emergence increased with increasing pathogen concentration and some parasitoid larvae became infected by B. bassiana within hosts. The negative impact of B. bassiana on D. semiclausum cocoon production decreased as temporal separation between parasitism and pathogen exposure increased. Adult parasitoid emergence was significantly compromised by the highest rates of B. bassiana tested even when exposure of host larvae to the pathogen was delayed until one day before predicted parasitoid cocoon formation. Parasitoid pupae were infected by the pathogen in all B. bassiana treatments which did not preclude their development. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In COPD inflammation driven by exposure to tobacco smoke results in impaired innate immunity in the airway and ultimately to lung injury and remodeling. To understand the biological processes involved in host interactions with cigarette derived toxins submerged epithelial cell culture is widely accepted as a model for primary human airway epithelial cell culture research. Primary nasal and bronchial epithelial cells can also be cultured in air-liquid interface (ALI) models. ALI and submerged culture models have their individual merits, and the decision to use either technique should primarily be determined primarily by the research hypothesis.

Cigarette smoke has gaseous and particulate matter, the latter constituent primarily represented in cigarette smoke extract (CSE). Although not ideal in order to facilitate our understanding of the responses of epithelial cells to cigarette smoke, CSE still has scientific merit in airway cell biology research. Using this model, it has been possible to demonstrate differences in levels of tight junction disruption after CSE exposure along with varied vulnerability to the toxic effects of CSE in cell cultures derived from COPD and control study groups.

Primary nasal epithelial cells (PNECs) have been used as an alternative to bronchial epithelial cells (PBECs). However, at least in subjects with COPD, PNECs cannot consistently substitute for PBECs. Although airway epithelial cells from patients with COPD exhibit a constitutional pro-inflammatory phenotype, these cells have a diminished inflammatory response to CSE exposure. COPD epithelial cells have an increased susceptibility to undergo apoptosis, and have reduced levels of Toll-like receptor-4 expression after CSE exposure, both of which may account for the reduced inflammatory response observed in this group.

The use of CSE in both submerged and ALI epithelial cultures has extended our understanding of the cellular mechanisms that are important in COPD, and helped to unravel important pathways which may be of relevance in its pathogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chapter describes the 10 years research of Anes Laboratory on the interactions of M. tuberculosis with macrophages namely with the actin. modulation by lipids, phagosome maturation and inflammasome activation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La réplication et l’assemblage du virus de l’hépatite C (VHC) sont régulés finement dans le temps et l’espace par les interactions protéiques entre le virus avec l’hôte. La compréhension de la biologie du virus ainsi que sa pathogénicité passe par les connaissances relatives aux interactions virus/hôte. Afin d’identifier ces interactions, nous avons exploité une approche d’immunoprécipitation (IP) couplée à une détection par spectrométrie de masse (MS), pour ensuite évaluer le rôle des protéines identifiées dans le cycle viral par une technique de silençage génique. Les protéines virales Core, NS2, NS3/4A, NS4B, NS5A et NS5B ont été exprimées individuellement dans les cellules humaines 293T et immunoprécipitées afin d’isoler des complexes protéiques qui ont été soumis à l’analyse MS. Ainsi, 98 protéines de l’hôte ont été identifiées avec un enrichissement significatif et illustrant une spécificité d’interaction. L’enrichissement de protéines connues dans la littérature a démontré la force de l’approche, ainsi que la validation de 6 nouvelles interactions virus/hôte. Enfin, le rôle de ces interactants sur la réplication virale a été évalué dans un criblage génomique par ARN interférant (ARNi). Deux systèmes rapporteurs de la réplication virale ont été utilisés : le système de réplicon sous-génomique (Huh7-Con1-Fluc) et le système infectieux (J6/JFH-1/p7Rluc2a), ainsi qu’un essai de toxicité cellulaire (Alamar Blue). Parmi les protéines de l’hôte interagissant avec le VHC, 28 protéines ont démontré un effet significatif sans effet de toxicité cellulaire, suggérant fortement un rôle dans la réplication du VHC. Globalement, l’étude a mené à l’identification de nouvelles interactions virus/hôte et l’identification de nouvelles cibles thérapeutiques potentielles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biotic interactions between brachiopods and spionid polychaete worms, collected around San Juan Islands (USA), were documented using observations from live-collected individuals and traces of bioerosion found in dead brachiopod shells. Specimens of Terebratalia tranversa (Sowerby), Terebratulina unguicula (Carpenter), Laqueus californianus (Koch), and Hemithiris psittacea (Gmelin) were collected from rocky and muddy substrates, from sites ranging from 14.7-93.3 m in depth. Out of 1,131 specimens, 91 shells showed traces of bioerosion represented by horizontal tubes. Tubes are U-shaped, straight or slightly curved, sometimes branched, with both tube openings communicating externally. on internal surfaces of infested shells, blisters are observed. All brachiopod species yielded tubes, except for H. psittacea. Tubes are significantly more frequent on live specimens, and occur preferentially on larger, ventral valves. This pattern suggests selectivity by the infester rather than a taphonomic bias. Given the mode of life of studied brachiopods (epifaunal, sessile, attached to the substrate, lying on dorsal valve), ventral valves of living specimens should offer the most advantageous location for suspension-feeding infesters. Frequent infestation of brachiopods by parasitic spionids is ecologically and commercially noteworthy because farmed molluscs are also commonly infested by parasitic polychaetes. In addition, brachiopod shells are among the most common marine macroscopic fossils found in the Phanerozoic fossil record. From a paleontological perspective, spionid-infested brachiopod shells may be a prime target for studying parasite-host interactions over evolutionary time scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microbial pathogens have evolved many ingenious ways to infect their hosts and cause disease, including the subversion and exploitation of target host cells. One such subversive microbe is enteropathogenic Escherichia coli (EPEC). A major cause of infantile diarrhea in developing countries, EPEC poses a significant health threat to children worldwide. Central to EPEC-mediated disease is its colonization of the intestinal epithelium. After initial adherence, EPEC causes the localized effacement of microvilli and intimately attaches to the host cell surface, forming characteristic attaching and effacing (A/E) lesions. Considered the prototype for a family of A/E lesion-causing bacteria, recent in vitro studies of EPEC have revolutionized our understanding of how these pathogens infect their hosts and cause disease. Intimate attachment requires the type III-mediated secretion of bacterial proteins, several of which are translocated directly into the infected cell, including the bacteria's own receptor (Tir). Binding to this membrane-bound, pathogen-derived protein permits EPEC to intimately attach to mammalian cells. The translocated EPEC proteins also activate signaling pathways within the underlying cell, causing the reorganization of the host actin cytoskeleton and the formation of pedestal-like structures beneath the adherent bacteria. This review explores what is known about EPEC's subversion of mammalian cell functions and how this knowledge has provided novel insights into bacterial pathogenesis and microbe-host interactions. Future studies of A/E pathogens in animal models should provide further insights into how EPEC exploits not only epithelial cells but other host cells, including those of the immune system, to cause diarrheal disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasmodium and Theileria parasites are obligate intracellular protozoa of the phylum Apicomplexa. Theileria infection of bovine leukocytes induces transformation of host cells and infected leukocytes can be kept indefinitely in culture. Theileria-dependent host cell transformation has been the subject of interest for many years and the molecular basis of this unique phenomenon is quite well understood. The equivalent life cycle stage of Plasmodium is the infection of mammalian hepatocytes, where parasites reside for 2-7 days depending on the species. Some of the molecular details of parasite-host interactions in P. berghei-infected hepatocytes have emerged only very recently. Similar to what has been shown for Theileria-infected leukocytes these data suggest that malaria parasites within hepatocytes also protect their host cell from programmed cell death. However, the strategies employed to inhibit host cell apoptotic pathways appear to be different to those used by Theileria. This review discusses similarities and differences at the molecular level of Plasmodium- and Theileria-induced regulation of the host cell survival machinery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since its identification in the 1990s, the RNA interference (RNAi) pathway has proven extremely useful in elucidating the function of proteins in the context of cells and even whole organisms. In particular, this sequence-specific and powerful loss-of-function approach has greatly simplified the study of the role of host cell factors implicated in the life cycle of viruses. Here, we detail the RNAi method we have developed and used to specifically knock down the expression of ezrin, an actin binding protein that was identified by yeast two-hybrid screening to interact with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) spike (S) protein. This method was used to study the role of ezrin, specifically during the entry stage of SARS-CoV infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression. Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression.