964 resultados para Parasitic Diseases.
Resumo:
OBJECTIVE: The aim of this study was to assess the IgE serum levels in juvenile systemic lupus erythematosus patients and to evaluate possible associations with clinical and laboratory features, disease activity and tissue damage. METHODS: The IgE serum concentrations in 69 consecutive juvenile systemic lupus erythematosus patients were determined by nephelometry. IgG, IgM and IgA concentrations were measured by immunoturbidimetry. All patients were negative for intestinal parasites. Statistical analysis methods included the Mann-Whitney, chi-square and Fisher's exact tests, as well as the Spearman rank correlation coefficient. RESULTS: Increased IgE concentrations above 100 IU/mL were observed in 31/69 (45%) juvenile systemic lupus erythematosus patients. The mean IgE concentration was 442.0 +/- 163.4 IU/ml (range 3.5- 9936.0 IU/ml). Fifteen of the 69 patients had atopic disease, nine patients had severe sepsis and 56 patients presented with nephritis. The mean IgE level in 54 juvenile systemic lupus erythematosus patients without atopic manifestations was 271.6 +/- 699.5 IU/ml, and only nine of the 31 (29%) patients with high IgE levels had atopic disease. The IgE levels did not statistically differ with respect to the presence of atopic disease, severe sepsis, nephritis, disease activity, or tissue damage. Interestingly, IgE concentrations were inversely correlated with C4 levels ( r = -0.25, p = 0.03) and with the SLICC/ACR-DI score (r = -0.34, p = 0.005). The IgE concentration was also found to be directly correlated with IgA levels (r = 0.52, p = 0.03). CONCLUSIONS: The present study demonstrated for the first time that juvenile systemic lupus erythematosus patients have increased IgE serum levels. This increase in IgE levels was not related to allergic or parasitic diseases. Our results are in line with the hypothesis that high IgE levels can be considered a marker of immune dysregulation.
Resumo:
Lightmicroscopical (LM) and electron microscopi cal (EM) techniques, have had a major influence on the development and direction of cell biology, and particularly also on the investigation of complex host-parasite relationships. Earlier, microscopy has been rather descriptive, but new technical and scientific advances have changed the situation. Microscopy has now become analytical, quantitative and three-dimensional, with greater emphasis on analysis of live cells with fluorescent markers. The new or improved techniques that have become available include immunocytochemistry using immunogold labeling techniques or fluorescent probes, cryopreservation and cryosectioning, in situ hybridization, fluorescent reporters for subcellular localization, micro-analytical methods for elemental distribution, confocal laser scanning microscopy, scanning tunneling microscopy and live-imaging. Taken together, these tools are providing both researchers and students with a novel and multidimensional view of the intricate biological processes during parasite development in the host.
Resumo:
Companion animals are increasingly brought along by their owners to foreign countries. Thus, small animal travel medicine is becoming more important. The field includes both prophylaxis and metaphylaxis against various infectious diseases, as well as their diagnosis and treatment. Dogs returning from Southern Europe, but also from more tropical regions, may be infected with exotic pathogens. In addition, imported pedigree or working dogs, and especially stray dogs imported through welfare organisations, are at high risk.The present overview summarises the clinical and practical aspects of exotic parasitic diseases that may affect such dogs, and the risk of such diseases becoming autochthonously transmitted in Switzerland. Furthermore, the zoonotic potential of these infections will be considered.
Resumo:
Published 1924.
Resumo:
Translated from Spomenica u cast novoizabranih clanova Sprske akademije nauka i umetnosti. Serbo-Croation, 1967, pp. 113-121.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Objective: To examine the frequency distribution of co-existing conditions for deaths where the underlying cause was infectious and parasitic diseases. Materials and methods: Besides the underlying cause of death, the distributions of co-existing conditions for deaths from infectious and parasitic diseases were examined in total and by various age and sex groups, at individual and chapter levels, using 1998 Australian mortality data. Results: In addition to the underlying cause of death, the average number of reported co-existing conditions for a single infectious and parasitic death was 1.62. The most common co-existing conditions were respiratory failure, acute renal failure non-specific causes, ischaemic heart disease, pneumonia and diabetes. When studying the distribution of co-existing conditions at the ICD-9 chapter level, it was found that the circulatory system diseases were the most important. There was an increasing trend in the number of reported co-existing conditions from 60 years of age upwards. Gender differences existed in the frequency of some reported co-existing conditions. The most common organism types of co-existing conditions were other bacterial infection and other viruses. Conclusions: The study indicated that the quality of death certificates is less than satisfactory for the 1998 Australian mortality data. The findings may be helpful in clarifying the ICD coding rules and the development of disease prevention strategies. (C) 2003 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Resumo:
Infectious and parasitic diseases have always challenged man. Although many of them are typically seen in some areas of the world and can be adequately managed by just improving socioeconomic status and sanitary conditions, they are still quite prevalent and may sometimes be seen outside their original geographical areas. Human migration due to different reasons, tourism, blood transfusion and solid organ transplantation has created new concerns for health professionals all over the world. If not for diagnostic purposes, at least these tropical and infectious diseases should be largely known because their epidemiology, pathogenesis, host/parasite interaction, inflammatory and reparative responses are quite interesting and teach us about human biology. Curiosity is inherent to pathology practice and so we are compelled to look for things other than tumours or degenerative diseases. This review focuses on infectious and parasitic diseases found in a developing country and brings up-to-date information on diseases caused by viruses (dengue, yellow fever), bacteria (typhoid fever, leprosy), parasites (Chagas` disease, cutaneous and visceral leishmaniasis, amoebiasis, Capillaria hepatica, schistosomiasis, cysticercosis) and caused by fungi (paracoccidioidomycosis, cryptococcosis, histoplasmosis) that may be useful for pathologists when facing somewhat strange cases from developing countries.
Resumo:
SUMMARY The aim of this study was to evaluate six different antigenic fractions from Strongyloides venezuelensis parasitic females for the immunodiagnosis of human strongyloidiasis. Soluble and membrane fractions from S. venezuelensis parasitic females were prepared in phosphate-buffered saline (SSF and SMF, respectively), Tris-HCl (TSF and TMF, respectively), and an alkaline buffer (ASF and AMF, respectively). Serum samples obtained from patients with strongyloidiasis or, other parasitic diseases, and healthy individuals were analyzed by enzyme-linked immunosorbent assay (ELISA). Soluble fractions SSF, TSF, and ASF showed 85.0%, 75.0%, and 80.0% sensitivity and 93.1%, 93.1%, and 87.5% specificity, respectively. Membrane fractions SMF, TMF, and AMF showed 80.0%, 75.0%, and 85.0% sensitivity, and 95.8%, 90.3%, and 91.7% specificity, respectively. In conclusion, the present results suggest that the fractions obtained from parasitic females, especially the SSF and SMF, could be used as alternative antigen sources in the serodiagnosis of human strongyloidiasis.
Resumo:
The thymus is a central lymphoid organ, in wich T cell precursors differentiale and generate most of the so-called T cell reprtoire. Along with a variety of acute infectious diseases, we and others determined important changes in both microenvironmental and lymphoid compartments of the organ. For example, one major and common feature observed in acute viral, bacterial and parasitic diseases, is a depletion of cortical thymocytes, mostly those bearing the CD4-CD8 double positive phenotype. This occurs simmultaneously to the relative enrichment in medullary CD4 or CD8 single positive cells, expressing high densities of the CD3 complex. Additionally we noticed a variety of changes in the thymic microenvironment (and particularly is epithelial component), comprising abnormal location of thymic epithelial cell subsets as well has a denser Ia-bearing cellular network. Moreover, the extracellular matrix network was altered with an intralobular increase of basement membrane proteins that positively correlated with the degree of thymocyte death. Lastly, anti-thymic cell antibodies were detected in both human and animal models of infectious diseases, and in some of them a phenomenon of molecular mimicry could be evidenced. Taken together, the data receiwed herein clearly show that the thymus should be regarded as a target in infectious diseases.
Resumo:
Aid for fighting infectious and parasitic diseases has had a statistically significant role in the under-five mortality reduction in the last decade. Point estimates indicate a country average reduction of 1.4 deaths per thousand under fives live-born attributable to aid at its average level in 2000-2010. The effect would be an average drop of 3.3 in the under-five mortality rate at the aid levels of 2010. By components, a dollar per capita spent in fighting malaria has caused the largest average impact, statistically higher than a dollar per capita spent in STD/HIV control. We do not find statistically significant effects of other infectious disease aid, including aid for the control of tuberculosis.
Resumo:
Host defense to intracellular pathogens depends upon both innate and adaptive cell-mediated immune responses. Polymorphonuclear neutrophil leukocytes which belong to the innate immune system are the first cells that are recruited massively within hours of microbial infection. Neutrophils are the main players in the killing of microorganisms and recently new methods of killing including nets formation have been described. Neutrophils mediate tissue damage at infected sites. By promoting tissue injury neutrophils contribute to the initiation of inflammation, which is now recognized as an essential step in launching immunity. The importance of neutrophils as decision shaper in the development of an immune response is only emerging as they have long been considered by immunologists as short lived, non-dividing cells, of poor interest. Now, neutrophils are emerging as key components of the inflammatory response, and are shown to have immunoregulatory roles in microbial infections. In addition, neutrophils were also reported to contribute to the recruitment and activation of antigen presenting cells. Thus early interactions between neutrophils and surrounding cells may influence the development/resolution of both inflammatory lesion and pathogen-specific immune response. The impact of neutrophils on cells present at the site of infection are only beginning to be studied and deserves more attention.In this e-book the reader will find updated information about the role of neutrophils in the pathogenesis of 1) bacterial diseases including sepsis, mycobacteria and Chlamydia infections, and of 2) parasitic diseases including leishmaniasis and toxoplasmosis. The role of neutrophils in the protection against microorganisms has largely been underestimated and, until recently, their role was mostly thought to limited to a "kill and die" response. New neutrophil mode of killing, such as their release of extracellular traps to kill extracellular bacterial pathogens, together with several microbial strategies designed to escape NETs are presented in Chapter 1. We will emphasize standard and advanced light microscopy techniques that allowed major advances in the understanding of neutrophil biology, through the visualization of the interaction of selected pathogens with neutrophils in living animals (Chapter 2).The aim of this e-book is to provide an overview of the recent advances made in the field of neutrophil biology. It will provide a basis for understanding future development that will occur in this area, and provide the reader with a short overview of some of the exciting new directions in which neutrophil research is moving.