992 resultados para Parasite evolution
Resumo:
Neohilgertia gen. n. proposed for Oxyuridae nematodes from Thylamys venustus cinderellus (Marsupialia: Didelphidae) is described. The hypothesis about the possibility of a secondary parasitism for marsupials and the origin of the genus in the African Sciuridae parasite ancestors is discussed.
Resumo:
After isolating three clones of Trypanasoma cruzi (Bolivia), we first characterized them according to parasitaemia, pleomorphism and virulence, and then histopathologically. The study's interest lies on the hypothesis that clonal evolution of T. cruzi has a major impact on biologically relevant properties of this parasite. Data obtained from the studies of parasitaemia, pleomorphism and virulence showed no differences between the groups studied. As a final point, the histopathological study shows us a muscular tissue tropism both in clones and in their mother strain (Bolivia). In this paper, we conclude that Bolivia strain and clones isolated from it, pertaining to the same major clone share similar biological properties.
Resumo:
Schistosomes, ancestors and recent species, have pervaded many hosts and several phylogenetic levels of immunity, causing an evolutionary pressure to eosinophil lineage expression and response. Schistosoma mansoni adult worms have capitalized on the apparent adversity of living within the mesenteric veins, using the dispersion of eggs and antigens to other tissues besides intestines to set a systemic activation of several haematopoietic lineages, specially eosinophils and monocytes/macrophages. This activation occurs in bone marrow, spleen, liver, lymph nodes, omental and mesenteric milky spots (activation of the old or primordial and recent or new lymphomyeloid tissue), increasing and making easy the migration of eosinophils, monocytes and other cells to the intestinal periovular granulomas. The exudative perigranulomatous stage of the periovular reaction, which present hystolitic characteristics, is then exploited by the parasites, to release the eggs into the intestinal lumen. The authors hypothesize here that eosinophils, which have a long phylogenic story, could participate in the parasite - host co-evolution, specially with S. mansoni, operating together with monocytes/ macrophages, upon parasite transmission.
Resumo:
Control of schistosomiasis in Venezuela has been a topic of major interest and controversy among the metaxenic parasitosis. A small area of transmission of approximately 15,000 km2 was thought to be eradicated some years ago. However, some epidemiological characteristics of our transmission area have limited the success on the way toward eradication. Since 1945, when the Schistosomiasis Control Program started, the prevalence in the endemic area has decreased from 14% in 1943 to 1.4% in 1996. Until 1982, the surveillance of active cases was based on massive stool examination. Since then, the Schistosomiasis Research Group (SRG) recommended the additional use of serologic tests in the Control Program and the selective or massive chemotherapy depending on serological and parasitological prevalence of each community. At present, the real prevalence is underestimated due to the fact that approximately 80% of the individuals eliminate less than 100 eggs/g of feces. Those persons could be responsible for the maintenance of the foci going on and therefore limiting the impact of the control measures. Efforts of the SRG are being oriented toward improvement of immunodiagnostic tests by using defined antigens (enzymes) and chemically synthesized peptides, derived from relevant molecules of the parasite, either for antibodies or antigens search. On the other hand, introduction of snail competitors has been a biological weapon in the control of the intermediate host in certain areas. However, the recent reinfestation of water courses by Biomphalaria glabrata, the increased prevalence in some areas, together with important administrative changes at the Control Program of the Minister of Health, have arisen new questions and doubts, challenging the eradication strategy proposed during the last decade.
Resumo:
Three different periods may be considered in the evolution of knowledge about the clinical and epidemiological aspects of Chagas disease since its discovery: (a) early period concerning the studies carried out by Carlos Chagas in Lassance with the collaboration of other investigators of the Manguinhos School. At that time the disease was described and the parasite, transmitters and reservoirs were studied. The coexistence of endemic goiter in the same region generated some confusion about the clinical forms of the disease; (b) second period involving uncertainty and the description of isolated cases, which lasted until the 1940 decade. Many acute cases were described during this period and the disease was recognized in many Latin American countries. Particularly important were the studies of the Argentine Mission of Regional Pathology Studies, which culminated with the description of the Romaña sign in the 1930 decade, facilitating the diagnosis of the early phase of the disease. However, the chronic phase, which was the most important, continued to be difficult to recognize; (c) period of consolidation of knowledge and recognition of the importance of Chagas disease. Studies conducted by Laranja, Dias and Nóbrega in Bambuí updated the description of Chagas heart disease made by Carlos Chagas and Eurico Villela. From then on, the disease was more easily recognized, especially with the emphasis on the use of a serologic diagnosis; (d) period of enlargement of knowledges on the disease. The studies on denervation conducted in Ribeirão Preto by Fritz Köberle starting in the 1950 decade led to a better understanding of the relations between Chagas disease and megaesophagus and other visceral megas detected in endemic areas.
Resumo:
The trypanosome evolution workshop, a joint meeting of the University of Exeter and the London School of Hygiene and Tropical Medicine, focused on topics relating to trypanosomatid and vector evolution. The meeting, sponsored by The Wellcome Trust, The Special Programme for Research and Training in Tropical Disease of World Health Organization and the British Section of the Society of Protozoologists, brought together an international group of experts who presented papers on a wide range of topics including parasite and vector phylogenies, molecular methodology and relevant biogeographical data.
Resumo:
Trypanosoma cruzi and the majority of its insect vectors (Hemiptera, Reduviidae, Triatominae) are confined to the Americas. But while recent molecular studies indicate a relatively ancient origin for the parasite (~65 million years ago) there is increasing evidence that the blood-sucking triatomine vectors have evolved comparatively recently (<5 mya). This review examines the evidence for these ideas, and attempts to reconcile the apparent paradox by suggesting that marsupial opossums (Didelphidae) may have played a role, not just as original reservoir hosts, but also as original vectors of the parasite.
Resumo:
A clinical-serological follow-up was carried out in a canine population in endemic foci of Leishmania braziliensis spread in northwestern Argentina. Each dog was studied in at least two visits, 309±15 days (X±SE) apart. Some initially healthy dogs (n=52) developed seroconversion or lesions. The clinical evolution of the disease in dogs resembles in many aspects the human disease. Similarities include the long duration of most ulcers with occasional healing or appearance of new ones and the late appearance of erosive snout lesions in some animals. Yearly incidence rates of 22.7% for seroconversion and of 13.5% for disease were calculated as indicators of the force of infection by this parasite upon the canine population.
Resumo:
The nematode parasite Ascaris lumbricoides infects the digestive tracts of over 1.4 billion people worldwide, and its sister species, Ascaris suum, has infected a countless number of domesticated and feral pigs. It is generally thought that the putative ancestor to these worms infected either humans or pigs, but with the advent of domestication, they had ample opportunity to jump to a new host and subsequently specialize and evolve into a new species. While nuclear DNA markers decisively separate the two populations, mitochondrial sequences reveal that three major haplotypes are found in A. suum and in A. lumbricoides, indicating either occasional hybridization, causing introgression of gene trees, or retention of polymorphism dating back to the original ancestral species. This article provides an illustration of the combined contribution of parasitology, archaeoparasitology, genetics and paleogenetics to the history of ascariasis. We specifically investigate the molecular history of ascariasis in humans by sequencing DNA from the eggs of Ascaris found among ancient archeological remains. The findings of this paleogenetic survey will explain whether the three mitochondrial haplotypes result from recent hybridization and introgression, due to intensive human-pig interaction, or whether their co-occurrence predates pig husbandry, perhaps dating back to the common ancestor. We hope to show how human-pig interaction has shaped the recent evolutionary history of this disease, perhaps revealing the identity of the ancestral host.
Resumo:
Organic remains can be found in many different environments. They are the most significant source for paleoparasitological studies as well as for other paleoecological reconstruction. Preserved paleoparasitological remains are found from the driest to the moistest conditions. They help us to understand past and present diseases and therefore contribute to understanding the evolution of present human sociality, biology, and behavior. In this paper, the scope of the surviving evidence will be briefly surveyed, and the great variety of ways it has been preserved in different environments will be discussed. This is done to develop to the most appropriated techniques to recover remaining parasites. Different techniques applied to the study of paleoparasitological remains, preserved in different environments, are presented. The most common materials used to analyze prehistoric human groups are reviewed, and their potential for reconstructing ancient environment and disease are emphasized. This paper also urges increased cooperation among archaeologists, paleontologists, and paleoparasitologists.
Resumo:
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Resumo:
The apicomplexan parasite Toxoplasma gondii is unusual in being able to infect almost any cell from almost any warm-blooded animal it encounters. This extraordinary host-range contrasts with its far more particular cousins such as the various species of the malaria parasite Plasmodium where each species of parasite has a single genus or even species of host that it can infect. Genetic and genomic studies have revealed a key role for a number of gene families in how Toxoplasma invades a host cell, modulates gene expression of that cell and successfully evades the resulting immune response. In this review, I will explore the hypothesis that a combination of sexual recombination and expansion of host range may be the major driving forces in the evolution of some of these gene families and the specific genes they encompass. These ideas stem from results and thoughts published by several labs in the last few years but especially recent papers on the role of different forms of rhoptry proteins in the relative virulence of F1 Toxoplasma progeny in a particular host species (mice).
Resumo:
Several different models of Trypanosoma cruzi evolution have been proposed. These models suggest that scarce events of genetic exchange occurred during the evolutionary history of this parasite. In addition, the debate has focused on the existence of one or two hybridisation events during the evolution of T. cruzi lineages. Here, we reviewed the literature and analysed available sequence data to clarify the phylogenetic relationships among these different lineages. We observed that TcI, TcIII and TcIV form a monophyletic group and that TcIII and TcIV are not, as previously suggested, TcI-TcII hybrids. Particularly, TcI and TcIII are sister groups that diverged around the same time that a widely distributed TcIV split into two clades (TcIVS and TcIVN). In addition, we collected evidence that TcIII received TcIVSkDNA by introgression on several occasions. Different demographic hypotheses (surfing and asymmetrical introgression) may explain the origin and expansion of the TcIII group. Considering these hypotheses, genetic exchange should have been relatively frequent between TcIII and TcIVS in the geographic area in which their distributions overlapped. In addition, our results support the hypothesis that two independent hybridisation events gave rise to TcV and TcVI. Consequently, TcIVS kDNA was first transferred to TcIII and later to TcV and TcVI in TcII/TcIII hybridisation events.
Resumo:
BACKGROUND: Evolutionary analysis may serve as a useful approach to identify and characterize host defense and viral proteins involved in genetic conflicts. We analyzed patterns of coding sequence evolution of genes with known (TRIM5alpha and APOBEC3G) or suspected (TRIM19/PML) roles in virus restriction, or in viral pathogenesis (PPIA, encoding Cyclophilin A), in the same set of human and non-human primate species. RESULTS AND CONCLUSION: This analysis revealed previously unidentified clusters of positively selected sites in APOBEC3G and TRIM5alpha that may delineate new virus-interaction domains. In contrast, our evolutionary analyses suggest that PPIA is not under diversifying selection in primates, consistent with the interaction of Cyclophilin A being limited to the HIV-1M/SIVcpz lineage. The strong sequence conservation of the TRIM19/PML sequences among primates suggests that this gene does not play a role in antiretroviral defense.
Resumo:
Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.