813 resultados para Parallel algorithms
Resumo:
Combinatorial Optimization is becoming ever more crucial, in these days. From natural sciences to economics, passing through urban centers administration and personnel management, methodologies and algorithms with a strong theoretical background and a consolidated real-word effectiveness is more and more requested, in order to find, quickly, good solutions to complex strategical problems. Resource optimization is, nowadays, a fundamental ground for building the basements of successful projects. From the theoretical point of view, Combinatorial Optimization rests on stable and strong foundations, that allow researchers to face ever more challenging problems. However, from the application point of view, it seems that the rate of theoretical developments cannot cope with that enjoyed by modern hardware technologies, especially with reference to the one of processors industry. In this work we propose new parallel algorithms, designed for exploiting the new parallel architectures available on the market. We found that, exposing the inherent parallelism of some resolution techniques (like Dynamic Programming), the computational benefits are remarkable, lowering the execution times by more than an order of magnitude, and allowing to address instances with dimensions not possible before. We approached four Combinatorial Optimization’s notable problems: Packing Problem, Vehicle Routing Problem, Single Source Shortest Path Problem and a Network Design problem. For each of these problems we propose a collection of effective parallel solution algorithms, either for solving the full problem (Guillotine Cuts and SSSPP) or for enhancing a fundamental part of the solution method (VRP and ND). We endorse our claim by presenting computational results for all problems, either on standard benchmarks from the literature or, when possible, on data from real-world applications, where speed-ups of one order of magnitude are usually attained, not uncommonly scaling up to 40 X factors.
Resumo:
We investigate parallel algorithms for the solution of the Navier–Stokes equations in space-time. For periodic solutions, the discretized problem can be written as a large non-linear system of equations. This system of equations is solved by a Newton iteration. The Newton correction is computed using a preconditioned GMRES solver. The parallel performance of the algorithm is illustrated.
Resumo:
Very large spatially-referenced datasets, for example, those derived from satellite-based sensors which sample across the globe or large monitoring networks of individual sensors, are becoming increasingly common and more widely available for use in environmental decision making. In large or dense sensor networks, huge quantities of data can be collected over small time periods. In many applications the generation of maps, or predictions at specific locations, from the data in (near) real-time is crucial. Geostatistical operations such as interpolation are vital in this map-generation process and in emergency situations, the resulting predictions need to be available almost instantly, so that decision makers can make informed decisions and define risk and evacuation zones. It is also helpful when analysing data in less time critical applications, for example when interacting directly with the data for exploratory analysis, that the algorithms are responsive within a reasonable time frame. Performing geostatistical analysis on such large spatial datasets can present a number of problems, particularly in the case where maximum likelihood. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively. Most modern commodity hardware has at least 2 processor cores if not more. Other mechanisms for allowing parallel computation such as Grid based systems are also becoming increasingly commonly available. However, currently there seems to be little interest in exploiting this extra processing power within the context of geostatistics. In this paper we review the existing parallel approaches for geostatistics. By recognising that diffeerent natural parallelisms exist and can be exploited depending on whether the dataset is sparsely or densely sampled with respect to the range of variation, we introduce two contrasting novel implementations of parallel algorithms based on approximating the data likelihood extending the methods of Vecchia [1988] and Tresp [2000]. Using parallel maximum likelihood variogram estimation and parallel prediction algorithms we show that computational time can be significantly reduced. We demonstrate this with both sparsely sampled data and densely sampled data on a variety of architectures ranging from the common dual core processor, found in many modern desktop computers, to large multi-node super computers. To highlight the strengths and weaknesses of the diffeerent methods we employ synthetic data sets and go on to show how the methods allow maximum likelihood based inference on the exhaustive Walker Lake data set.
Resumo:
With the ability to collect and store increasingly large datasets on modern computers comes the need to be able to process the data in a way that can be useful to a Geostatistician or application scientist. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively for likelihood-based Geostatistics. Various methods have been proposed and are extensively used in an attempt to overcome these complexity issues. This thesis introduces a number of principled techniques for treating large datasets with an emphasis on three main areas: reduced complexity covariance matrices, sparsity in the covariance matrix and parallel algorithms for distributed computation. These techniques are presented individually, but it is also shown how they can be combined to produce techniques for further improving computational efficiency.
Resumo:
MSC Subject Classification: 65C05, 65U05.
Resumo:
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Resumo:
Solving linear systems is an important problem for scientific computing. Exploiting parallelism is essential for solving complex systems, and this traditionally involves writing parallel algorithms on top of a library such as MPI. The SPIKE family of algorithms is one well-known example of a parallel solver for linear systems. The Hierarchically Tiled Array data type extends traditional data-parallel array operations with explicit tiling and allows programmers to directly manipulate tiles. The tiles of the HTA data type map naturally to the block nature of many numeric computations, including the SPIKE family of algorithms. The higher level of abstraction of the HTA enables the same program to be portable across different platforms. Current implementations target both shared-memory and distributed-memory models. In this thesis we present a proof-of-concept for portable linear solvers. We implement two algorithms from the SPIKE family using the HTA library. We show that our implementations of SPIKE exploit the abstractions provided by the HTA to produce a compact, clean code that can run on both shared-memory and distributed-memory models without modification. We discuss how we map the algorithms to HTA programs as well as examine their performance. We compare the performance of our HTA codes to comparable codes written in MPI as well as current state-of-the-art linear algebra routines.
Resumo:
A poster of this paper will be presented at the 25th International Conference on Parallel Architecture and Compilation Technology (PACT ’16), September 11-15, 2016, Haifa, Israel.
Resumo:
Les factoritzacions de la FFT (Fast Fourier Transform) que presenten un patró d’interconnexió regular entre factors o etapes son conegudes com algorismes paral·lels, o algorismes de Pease, ja que foren originalment proposats per Pease. En aquesta contribució s’han desenvolupat noves factoritzacions amb blocs que presenten el patró d’interconnexió regular de Pease. S’ha mostrat com aquests blocs poden ser obtinguts a una escala prèviament seleccionada. Les noves factoritzacions per ambdues FFT i IFFT (Inverse FFT) tenen dues classes de factors: uns pocs factors del tipus Cooley-Tukey i els nous factors que proporcionen la mateix patró d’interconnexió de Pease en blocs. Per a una factorització donada, els blocs comparteixen dimensions, el patró d’interconnexió etapa a etapa i a més cada un d’ells pot ser calculat independentment dels altres.
Resumo:
Diplomityö tarkastelee säikeistettyä ohjelmointia rinnakkaisohjelmoinnin ylemmällä hierarkiatasolla tarkastellen erityisesti hypersäikeistysteknologiaa. Työssä tarkastellaan hypersäikeistyksen hyviä ja huonoja puolia sekä sen vaikutuksia rinnakkaisalgoritmeihin. Työn tavoitteena oli ymmärtää Intel Pentium 4 prosessorin hypersäikeistyksen toteutus ja mahdollistaa sen hyödyntäminen, missä se tuo suorituskyvyllistä etua. Työssä kerättiin ja analysoitiin suorituskykytietoa ajamalla suuri joukko suorituskykytestejä eri olosuhteissa (muistin käsittely, kääntäjän asetukset, ympäristömuuttujat...). Työssä tarkasteltiin kahdentyyppisiä algoritmeja: matriisioperaatioita ja lajittelua. Näissä sovelluksissa on säännöllinen muistinkäyttökuvio, mikä on kaksiteräinen miekka. Se on etu aritmeettis-loogisissa prosessoinnissa, mutta toisaalta huonontaa muistin suorituskykyä. Syynä siihen on nykyaikaisten prosessorien erittäin hyvä raaka suorituskyky säännöllistä dataa käsiteltäessä, mutta muistiarkkitehtuuria rajoittaa välimuistien koko ja useat puskurit. Kun ongelman koko ylittää tietyn rajan, todellinen suorituskyky voi pudota murto-osaan huippusuorituskyvystä.
Resumo:
This paper makes a contribution in bridging the theory and practice of the polyhedral model for designing parallel algorithms. Although the theory of polyhedral model is well developed, designers of massively parallel algorithms are unable to benefit from the theory due to the lack of software tools that incorporate the wide range of transformations that are possible in the model. The Uniformization tool that we developed was the first to integrate a number of techniques and to completely automate the transformation step allowing designers to explore a wide range of feasible designs from high-level specifications.
Resumo:
An interconnection network with n nodes is four-pancyclic if it contains a cycle of length l for each integer l with 4 <= l <= n. An interconnection network is fault-tolerant four-pancyclic if the surviving network is four-pancyclic in the presence of faults. The fault-tolerant four-pancyclicity of interconnection networks is a desired property because many classical parallel algorithms can be mapped onto such networks in a communication-efficient fashion, even in the presence of failing nodes or edges. Due to some attractive properties as compared with its hypercube counterpart of the same size, the Mobius cube has been proposed as a promising candidate for interconnection topology. Hsieh and Chen [S.Y. Hsieh, C.H. Chen, Pancyclicity on Mobius cubes with maximal edge faults, Parallel Computing, 30(3) (2004) 407-421.] showed that an n-dimensional Mobius cube is four-pancyclic in the presence of up to n-2 faulty edges. In this paper, we show that an n-dimensional Mobius cube is four-pancyclic in the presence of up to n-2 faulty nodes. The obtained result is optimal in that, if n-1 nodes are removed, the surviving network may not be four-pancyclic. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present a connectionist searching technique - the Stochastic Diffusion Search (SDS), capable of rapidly locating a specified pattern in a noisy search space. In operation SDS finds the position of the pre-specified pattern or if it does not exist - its best instantiation in the search space. This is achieved via parallel exploration of the whole search space by an ensemble of agents searching in a competitive cooperative manner. We prove mathematically the convergence of stochastic diffusion search. SDS converges to a statistical equilibrium when it locates the best instantiation of the object in the search space. Experiments presented in this paper indicate the high robustness of SDS and show good scalability with problem size. The convergence characteristic of SDS makes it a fully adaptive algorithm and suggests applications in dynamically changing environments.