516 resultados para Paleoclimatology
Resumo:
The response of the tropics to North Atlantic cold events, such as Heinrich Event I (H-I, ∼ 17–15 ka) and the Younger Dryas (YD, 12.7–11.5 ka), is still one of the most tantalizing, yet unresolved issues in paleoclimatology. The advent of surface exposure dating has therefore instigated the establishment of glacial chronologies in the tropical Andes to investigate potential climate teleconnections. Here, we present new exposure ages from the Cordillera Cochabamba (17°17′S), Bolivia, that reveal glacial advances during H-I and YD, as well as during the Early Holocene. Our chronology correlates well with cold sea surface temperatures in the eastern tropical Pacific, which indicates that La Niña-like conditions, i.e. forcings intrinsic to the tropics, played a key role for moisture advection and glaciation in the tropical Andes.
Resumo:
We present the data assimilation approach, which provides a framework for combining observations and model simulations of the climate system, and has led to a new field of applications for paleoclimatology. The three subsequent articles explore specific applications in more detail.
Resumo:
To make use of the isotope ratio of nonexchangeable hydrogen (δ2Hn (nonexchangeable)) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (Corg) and organic N (Norg) recovery of demineralized SOM concentrates was significantly increased (Corg recovery using existing techniques vs new demineralization method: 58% vs 78%; Norg recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ2Hn values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ2Hn analyses of SOM as a new tool in paleoclimatology or geospatial forensics.
Resumo:
Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (εNd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and εNd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ∼25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.