99 resultados para PXRD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd1.95Eu0.4M0.01O3 (M = Li+ Na+ K+) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li+, Na+ and K+ in to Gd2O3:Eu3+ phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd2O3:Eu3+ phosphor was improved evidently by co-doping with Li+ ions whose radius is less than that of Gd3+ and hardly with Na+, K+ whose radius is larger than that of Gd3+. The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu3+ activator. These results will play an important role in seeking some more effective co-dopants. (C) 2011 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zn(1-x)Fe(x)O(1+0.5x) (x = 0.5-5 mol%) nanoparticles were synthesized by a low temperature solution combustion route. The structural characterization of these nanoparticles by PXRD, SEM and TEM confirmed the phase purity of the samples and indicated a reduction in the particle size with increase in Fe content. A small increase in micro strain in the Fe doped nanocrystals is observed from W-H plots. EPR spectrum exhibits an intense resonance signal with effective g values at g approximate to 2.0 with a sextet hyperfine structure (hfs) besides a weak signal at g approximate to 4.13. The signal at g approximate to 2.0 with a sextet hyperfine structure might be due to manganese impurity where as the resonance signal at g approximate to 4.13 is due to iron. The optical band gap E-g was found to decrease with increase of Fe content. Raman spectra exhibit two non-polar optical phonon (E-2) modes at low and high frequencies at 100 and 435 cm(-1) in Fe doped samples. These modes broaden and disappear with increase of Fe do pant concentration. TL measurements of gamma-irradiated (1-5 kGy) samples show a main glow peak at 368 degrees C at a warming rate of 6.7 degrees Cs-1. The thermal activation parameters were estimated from Glow peak shape method. The average activation energy was found to be in the range 0.34-2.81 eV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four new cocrystals of a well studied active pharmaceutical ingredient (API), namely, pyrazinecarboxamide (PZA), with various monocarboxylic acids equipped with additional hydrogen bonding sites such as vanillic acid (VA), gallic acid (GA), 1-hydroxy-2-naphthoic acid (1HNA), and indole-2-carboxylic acid (I2CA) have been successfully prepared and characterized by FTIR, H-1 NMR, differential scanning calorimetry (DSC), and single crystal and powder X-ray diffraction (SXRD and PXRD, respectively) techniques. In the majority of the cases, preferential occurrence amide amide and acid acid homosynthons has been observed. Since the heterosynthon is energetically preferred to homosynthon, such unusual occurrence of homosynthon in these cocrystals is intriguing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800A degrees C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV-Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer's method and Williamson-Hall plots and are found to be in the ranges 40-60 nm and 30-80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at similar to 590, 612 and 625 nm, which are due to the transitions D-5(0)-> F-7(0), D-5(0)-> F-7(2) and D-5(0)-> F-7(3) of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s(2)-> 6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380A degrees C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Nd2O3:Cu2+ (2 mol %) phosphors have been prepared by a low temperature solution combustion technique. Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 (900 degrees C, 3 h) and the lattice parameters have been evaluated by Rietveld refinement. Surface morphology of as-formed and Cu2+ doped Nd2O3 phosphors show that the particles are irregular in shape and porous in nature. TEM results also confirm the nature and size of the particles. The EPR spectrum exhibits two resonance signals with effective g values at g(parallel to) approximate to 2.12 and g(perpendicular to) approximate to 2.04. The g values indicate that the site symmetry of Cu2+ ions is octahedral symmetry with elongated tetragonal distortion. Raman studies show major peaks, which are assigned, to F-g and combination of A(g) + E-g modes. It is observed that the Raman peaks and intensity have been reduced in Cu2+ doped samples. UV-Visible absorption spectra exhibit a strong and broad absorption band at similar to 240 nm. Further, the absorption peak shifts to similar to 14 nm in Cu2+ doped samples. The optical band gap is estimated to be 5.28 eV for Cu doped Nd2O3 nanoparticles which are higher than the bulk Nd2O3 (4.7 eV). This can be attributed to the quantum confinement effect of the nanoparticles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile method of solution combustion was used to synthesize a new solid solution Bi2Ce2O7. The structure was determined from powder X-ray diffraction (PXRD) and found to crystallize in the space group Fm (3) over barm with cell parameter a = 5.46936(9) angstrom. The particle sizes varied from 5 to 6 nm. The degradation of cationic dye malachite green (MG) was investigated under solar radiation as the band gap of the material is 2.34 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd 2O 3 nanoparticles (27-60nm) have been synthesized by the low temperature solution combustion method using citric acid, urea, glycine and oxalyl dihydrazide (ODH) as fuels in a short time. The structural and luminescence properties have been carried out using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman, UV-Vis, photoluminescence (PL) and thermoluminescence (TL) techniques. The optical band gap values were estimated for as formed and 800°C calcined samples. The band gap values in as-formed and calcined samples were found to be in the range 4.89-5.59eV. It is observed that, the band gap values are lower for as-formed products and it has been attributed to high degree of structural defects. However, in calcined samples, structure becomes more order with reduced structure defects. Upon 270nm excitation, deep blue UV-band at �390nm along with blue (420-482nm), green (532nm) and red emission (612nm) was observed. The 390nm emission peak may be attributed to recombination of delocalized electron close to the conduction band with a single charged state of surface oxygen vacancy. TL measurements were carried out on Gd 2O 3 prepared by different fuels by irradiating with γ-rays (1kGy). A well resolved glow peak at 230°C was observed for all the samples. It is observed that TL intensity is found to be higher in for urea fuel when compared to others. From TL glow curves the kinetic parameters were estimated using Chen's peak shape method and results are discussed in detail. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study of spherical and rod-like nanocrystalline GdO:Eu (GdEuO) red phosphors prepared by solution combustion and hydrothermal methods have been reported. Powder X-ray diffraction (PXRD) results confirm the as-formed product in combustion method showing mixed phase of monoclinic and cubic of GdO:Eu. Upon calcinations at 800C for 3 h, dominant cubic phase was achieved. The as-formed precursor hydrothermal product shows hexagonal Gd(OH):Eu phase and it converts to pure cubic phase of GdO:Eu on calcination at 600C for 3 h. TEM micrographs of hydrothermally prepared cubic GdO:Eu phase shows nanorods with a diameter of 15 nm and length varying from 50 to 150 nm, whereas combustion product shows the particles to be of irregular shape, with different sizes in the range 50-250 nm. Dominant red emission (612 nm) was observed in cubic GdO:Eu which has been assigned to transition. However, in hexagonal Gd(OH):Eu, emission peaks at 614 and 621 nm were observed. The strong red emission of cubic GdO:Eu nanophosphors by hydrothermal method are promising for high performance display materials. The variation in optical energy bandgap () was noticed in as-formed and heat treated systems in both the techniques. This is due to more ordered structure in heat treated samples and reduction in structural defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of two polymorphs and two polymorphic hemihydrates of Etoricoxib are reported. Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) that is a selective inhibitor of COX-2. It is used in the treatment of various types of inflammation, pain and fever. Clas et al. have reported four polymorphs (labeled I through IV) and two solvates (hemi-and sesquihydrate) of the API in US patent 6,441,002 (Clas et al, US patent 6,441,002, 2002). However, no crystal structures have been reported for any of these forms. A comparison was made between the PXRD patterns reported in patent `002 and the powder spectra simulated from single crystal data. The two polymorphs characterized here correspond to form I and form IV of the patent. Form II of the patent could not be obtained by us with a variety of experimental conditions. Form III of the patent corresponds to hemihydrate II of this study. Form III is therefore not a polymorph of form I and form IV. What we have termed hemihydrate I in this study is obtained under a wide variety of conditions and it is also the only hemihydrate reported as such in the patent. Because the Etoricoxib molecule contains no conventional hydrogen bond donors, there cannot be any strong hydrogen bonds in the crystal structures of forms I and IV. The packing is accordingly characterized by weak hydrogen bonds of the C-H center dot center dot center dot O=S and C-H center dot center dot center dot N type. Thermal data were collected for form I, form IV and hemihydrate I to shed some light on relative stabilities. PXRD diffractograms show the transformation of form IV to form I at elevated temperature, indicating that form I is more stable than form IV. However, this transformation occurs only in samples of form IV that contain some form I; it does not occur in pure form IV. The formation of the two hemihydrates could follow from the known tendency of an acceptor-rich molecule to crystallize as a hydrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Pr3+ (1-9 mol%) doped CdSiO3 nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The average crystallite size was calculated using Debye-Scherrer's formula and Williamson-Hall (W-H) plots and found to be in the range 31-37 nm. The optical energy band gap (E-g) of undoped for Pr3+ doped samples were estimated from Tauc relation which varies from 5.15-5.36 eV. Thermoluminescence (TL) properties of Pr3+ doped CdSiO3 nanophosphor has been investigated using gamma-irradiation in the dose range 1-6 kGy at a heating rate of 5 degrees C s(-1). The phosphor shows a well resolved glow peak at similar to 171 degrees C along with shouldered peak at 223 degrees C in the higher temperature side. It is observed that TL intensity increase with increase of Pr3+ concentration. Further, the TL intensity at 171 degrees C is found to be increase linearly with increase in gamma-dose which is highly useful in radiation dosimetry. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated by Luschiks method and the results are discussed. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A porous metalorganic framework, Mn(H3O)(Mn4Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl2 under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasmaatomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and BrunauerEmmettTeller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha-Fe2O3 nanoparticles were synthesized by a low temperature solution combustion method. The structural, magnetic and luminescence properties were studied. Powder X-ray diffraction (PXRD) pattern of alpha-Fe2O3 exhibits pure rhombohedral structure. SEM micrographs reveal the dumbbell shaped particles. The EPR spectrum shows an intense resonance signal at g approximate to 5.61 corresponding to isolated Fe3+ ions situated in axially distorted sites, whereas the g approximate to 2.30 is due to Fe3+ ions coupled by exchange interaction. Raman studies show A(1g) (225 cm(-1)) and E-g (293 and 409 cm(-1)) phonon modes. The absorption at 300 nm results from the ligand to metal charge transfer transitions whereas the 540 nm peak is mainly due to the (6)A(1) + (6)A(1) —> T-4(1)(4G) + T-4(1)(4G) excitation of an Fe3+-Fe3+ pair. A prominent TL glow peak was observed at 140 C at heating rate of 5 degrees C s(-1). The trapping parameters namely activation energy (E), frequency factor (s) and order of kinetics (b) were evaluated and discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

YAlO3:Ni2+ (0.1 mol%) doped nanophosphor was synthesised by a low temperature solution combustion method. Powder X-ray diffraction (PXRD) confirms the orthorhombic phase of yttrium aluminate (YAlO3) along with traces of Y3Al5O12. Scanning Electron microscopy (SEM) shows that the powder particles appears to be spherical in shape with large agglomeration. The average crystallite sizes appeared to be in the range 45-90 nm and the same was confirmed by transmission electron microscopy (TEM) and Williamson-Hall (W-H) plots. Electron Paramagnetic Resonance (EPR) and photoluminescence (PL) studies reveal that Ni2+ ions are in octahedral coordination. Thermoluminescence (TL) glow curve consists of two peaks with the main peak at similar to 224 degrees C and a shouldered peak at 285 degrees C was recorded in the range 0.2-15 kGy gamma-irradiated samples. The TL intensity was found to be increasing linearly for 224 degrees C and 285 degrees C peaks up to 1 kGy and thereafter it shows sub-linear (up to 8 kGy) and saturation behavior. The trap parameters namely activation energy (E), order of kinetics (b), frequency factor (s) at different gamma-doses were determined using Chens glow peak shape and Luschiks methods then the results are discussed in detail. Simple glow peak structure, the 224 degrees C peak in YAlO3:Ni2+ nanophosphor can be used in personal dosimetry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.