965 resultados para PURE ORGANIC-PHASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential windows of the system water/pure solvent (W/P) and water/solvent mixtures(W/S) have been investigated by cyclic voltammetry with solvents whose dielectric constants lie between 5.87 and 34.82. In the presence of LiCI in the aqueous phase and tetrabutytammoniumtetraphenylborate(TBATPB) in the organic phase, the systems water/allyl iso-thiocyanate (W/AIT) and water/nitrobensene (W/NB) show a same wide epotential window. thermodynamic parameters of ion transfer W/AIT interface were determined. In systems of W/P and V/S the influence solvent effect on the standard gibbs energies of transfer of was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise control over the interfacial area of aqueous and organic slugs in segmented flow in a microchannel reactor provides an attractive means to optimize the yield and productivity of a phase-transfer-catalyzed reaction. Herein, we report the selective alkylation of phenylacetonitrile to the monoalkylated product in a microchannel of 250-mu m internal diameter operated in a continuous and solvent-free manner in the slug-flow regime. The conversion of phenylacetonitrile increased from 40% to 99% as a result of a 97% larger slug surface-to-volume ratio when the volumetric aqueous-to-organic phase flow ratio was raised from 1.0 to 6.1 at the same residence time. The larger surface-to-volume ratio significantly promoted catalyst phase transfer but decreased selectivity because of the simultaneous increase of the rate of the consecutive reaction to the dialkylated product. There exists all Optimum flow ratio with a maximum productivity. Conversion and selectivity in the microchannel reactor were both found to be significantly larger than in a stirred reactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic iron oxide nanoparticles (magnetite) (MNPs) were prepared using different organic and inorganic bases. Strong inorganic base (KOH) and organic bases (NH4OH and 1,4-diazabicyclo[2.2.2]octane (DABCO)) were used in the syntheses of the MNPs. The MNPs were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FT-IR) and magnetization measurements. MNPs prepared with strong inorganic base yielded an average size of 100 nm, whereas the average size of the MNPs prepared with the organic bases was 150 nm. The main competitive phase for MNPs prepared with the strong inorganic and organic bases was maghemite; however, syntheses with KOH yielded a pure magnetite phase. The transfection study performed with the MNPs revealed that the highest transfection rate was obtained with the MNPs prepared with KOH (74%). The correlation between the magnetic parameters and the transfection ratio without transfection agents indicated that MNPs prepared with KOH were a better vector for possible applications of these MNPs in biomedicine. HeLa cells incubated with MNP-KOH at 10 mu g/mL for 24 and 48 h exhibited a decrease in population in comparison with the control cells and it was presumably related to the toxicity of the MNPs. However, the cells incubated with MNP-KOH at 50 and 100 mu g/mL presented a very small difference in the viability between the cell populations studied at 24 and 48 h. These data illustrate the viability of HeLa cells treated with MNP-KOH and suggest the potential use of these MNPs in biomedical applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presence of an inert immiscible organic phase in gas�liquid dispersions in stirred vessels influences the interfacial area in a more complex fashion than hitherto reported. As the organic phase fraction is increased, the interfacial area expressed on the basis of a unit volume of dispersion or aqueous phase, first increases, passes through a maximum and then decreases. This trend is observed irrespective of whether the area is determined by chemical means or by physical method. It is found that for low values of inert phase fraction, the average bubble size decreases whereas the gas holdup increases, resulting in increased interfacial area. The lower average bubble size is found to be due to partial prevention of coalescence as the bubbles size generated in the impeller region actually increases with the organic phase fraction. The actual values of interfacial areas depend on the nature of the organic phase. It is also found that the organic phase provides a parallel path for mass transfer to occur, when the solubility of gas in it is high.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of similar to 200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Size effect in ferroelectrics has been extensively investigated in the past with the general consensus that the long-range ferroelectric ordering gradually disappears with decreasing crystallite size, eventually leading to the paraelectric state. In this paper, we show that the compositions exhibiting giant tetragonality (c/a similar to 1.18) of the ferroelectric alloy system BiFeO3-PbTiO3 transform from a pure tetragonal phase to a state comprising tetragonal and rhombohedral phases as the average crystallite size is reduced from similar to 10 to similar to 1 mu m. It is argued that the increased surface energy in the smaller sized crystallites creates an equivalent compressive stress that drives the system towards tetragonal-rhombohedral criticality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.