203 resultados para PSII
Resumo:
本文主要研究了一系列具有不同配位环璄的锰化合物与去锰PSII颗粒的光组装过程;其次,应用太赫兹时域光谱技术对锰稳定蛋白PsbO蛋白的结构与功能进行了研究。主要结果如下: 1. 选择了一组单核、锰中心原子为二价、与羧基氧和氮配位的锰化合物与去锰光系统II颗粒进行了重组研究。研究结果表明,锰化合物中锰原子和氮原子的配位连接是影响电子传递恢复和放氧复合物重组效率的重要因素。锰化合物中锰原子与氮原子的配位,促进了锰原子与PSII脱辅基蛋白上的氨基酸残基进行光配位。33 kDa蛋白的加入显著提高光组装放氧活性,33 kDa蛋白的柔性构象有助于锰簇接受体积大的分子,并提高其稳定性,从而促进PSII反应中心锰簇的光组装。 2. 选择了一组拥有相同配体、锰中心原子价态不同的锰化合物与去锰PSII 颗粒进行重组。三个锰价态为+2,+3,+4价的锰化合物均表现出较高的恢复电子传递和放氧活性的能力,但锰与配体氧原子共价连接的锰化合物恢复电子传递和放氧活性的能力的很差,Mn-O连接阻碍WOC的重组。研究结果表明,锰化合物恢复电子传递活性和放氧活性的能力也受其中锰原子的价态及其它结构因素的影响。锰价态较低的锰化合物比锰价态较高的锰化合物更容易向PSII反应中心提供电子。锰化合物恢复电子传递和放氧活性的因素是不同的。锰化合物作为有效电子供体的效率与其螯合环数成反比,但配体的大小不是影响锰化合物重组放氧活性的主要因素。 3. 应用太赫兹时域光谱技术结合荧光光谱技术,研究了锰稳定蛋白PsbO在与金属离子作用及单个氨基酸被修饰后其构象变化和低频振动模的变化。实验结果显示,该蛋白上唯一的色氨酸对整个蛋白构象至关重要,它的改变引起整个蛋白分子低频振动模发生明显改变。此外,太赫兹时域光谱结果显示,PsbO可能含有钙结合位点。太赫兹时域光谱技术在研究蛋白构象变化,尤其是金属离子诱导的构象变化方面是相当灵敏的。
Resumo:
光系统II(PSII)是叶绿体类囊体膜上电子传递链中第一个色素蛋白复合体,由20多个蛋白亚基组成。它催化光驱动的水的裂解和醌的氧化。由于其结构的复杂性,PSII的生物发生和组装是核基因与叶绿体基因编码的蛋白以一定次序多步骤合成、组装的复杂过程,并需要大量的核基因编码的调节组装因子的参与。分离、鉴定拟南芥中这些核基因编码的叶绿体蛋白并研究它们的作用机制有助于我们认识高等植物PSII复合物组装和功能调控的分子机理。因此,我们从T-DNA插入的拟南芥突变体库中筛选到PSII突变体lpa2(low photosystemII accumulation),对LPA2蛋白调控光系统II复合物组装的功能进行了研究,并进一步探讨了LPA2和其他调节因子协同作用参与PSII组装的模式。 突变体lpa2具有高叶绿素荧光表型,与野生型相比生长量、色素含量均显著降低。蛋白免疫印记发现在lpa2突变体中光系统II复合物的累积量明显降低,仅有野生型的30%左右,而其他复合物的含量变化不大。核酸杂交和与多聚核糖体结合的检测表明光系统II亚基在转录及翻译启始水平没有受到影响。拟南芥叶片蛋白标记实验证明在突变体中CP43的合成量明显降低而其他光系统II主要蛋白CP47, D1 和 D2的合成正常,但相对于野生型这些蛋白的周转速率加快。在突变体中,新合成的蛋白亚基可以组装进入光系统II复合物,但新合成的CP43蛋白组装效率降低。以上的结果表明LPA2对光系统II的正常组装起着重要的作用,LPA2的缺失导致CP43不能有效组装进入光系统II,从而引起其他核心蛋白周转加快,光系统 II复合物累积量降低,最终植株光合效率降低。 基因克隆和蛋白定位分析表明LPA2基因编码一个内在的类囊体膜蛋白,但并不是光系统II的亚基组分。进一步采用酵母双杂分析证实了LPA2蛋白与光系统II核心蛋白CP43有相互作用,而与中心蛋白D1和D2没有相互作用。此外实验还表明LPA2蛋白与参与类囊体膜生物发生有关的Alb3蛋白有相互作用。因此LPA2可能是与Alb3形成复合物来协助CP43有效的整合进入光系统II。 另外,我们实验室已鉴定,LPA3,LPA4也是分别特异地参与CP43和D1组装的光系统II分子伴侣。LPA2,LPA3基因共同缺失会使幼苗不能光合自养而致死,因而LPA2和LPA3共同相互作用促进CP43的组装。体内和体外实验证明LPA2,LPA3和LPA4都和Alb3相互作用,而参与D1组装的分子伴侣LPA1不和Alb3以及上述这些伴侣因子作用。因此,Alb3 很有可能与LPA2、LPA3和LPA4形成多蛋白复合物在D1蛋白合成之后的组装过程中起作用。这些结果表明光系统II多亚基复合物组装是多步骤的,并通过一个精确复杂的调控网络确保复合物的有效组装以及功能行使。
Resumo:
光合作用过程中光能的吸收、传递和转化都是在类囊体膜中进行的,它是由脂质双层膜和色素蛋白复合物构成的。光系统II(PSII)是存在于类囊体膜中的多亚基色素蛋白复合物,主要功能是吸收光能,进行光诱导的电荷分离,产生电子传递并催化水的光解。光系统II捕光天线复合物(LHCII)与PSII核心复合物结合形成的PSII-LHCII超分子复合物,是PSII在体内的基本结构和功能单元,这一结构保证了LHCII吸收的能量快速有效的传递到PSII反应中心,进行原初光化学反应。膜脂与膜蛋白的相互作用在调节PSII-LHCII超分子复合物各亚基之间的结构和功能方面起着重要作用,而在类囊体膜脂中,非双层脂单半乳糖甘油二脂(MGDG)含量最多,约占50%,在光合膜蛋白的结构和功能中具有重要作用。 本论文利用脂质体重组等技术研究了LHCII和放氧核心超分子复合物(OECC)之间的功能关系,MGDG的作用以及微量天线的功能。主要结果如下: 1. MGDG能和Chl a、PC或其它类囊体膜脂一起与PSII蛋白构建蛋白脂质体,脂质体形状较规则统一,基本呈圆球状,阻止了MGDG反六角相结构的形成。脂质体的直径大小在100-500 nm之间,属于小单层脂质体。PSII膜蛋白LHCII和OECC能在MGDG脂质体中实现重组,形成LHCII-OECC超分子复合物,在结构上相互偶联,LHCII-OECC蛋白颗粒直径在15-25 nm之间。LHCII吸收的能量能够传递到核心复合物OECC中,形成功能上的偶联,而且LHCII的结合增加了功能天线的大小和捕光截面积,从而提高了PSII的光化学活性。 2. MGDG对蛋白脂质体的结构和功能有影响。低温荧光发射光谱和PSII光化学活性的结果显示,MGDG影响了PSII复合物色素和蛋白的存在状态;MGDG能增强LHCII和OECC之间的相互作用,促进能量从LHCII到核心复合物的传递,提高PSII的光化学活性。 3. MGDG促进类囊体膜脂和PC-MGDG蛋白脂质体的放氧活性的原因不同。在类囊体膜脂脂质体中,MGDG主要通过膜蛋白疏水部分的横向压力增加PSII偶合的天线量,提高PSII的光化学活性;而在PC-MGDG蛋白脂质体中,MGDG不能加强PSII与天线的偶合,可能是通过MGDG与LHCII的相互作用,增加PSII的光化学活性。 4. 微量天线不是大量天线和核心复合物重组和相互作用所必需的,但微量天线的存在,能促进大量天线与PSII核心复合物之间的能量传递和放氧活性,大量天线与PSII核心复合物之间的偶联作用得到增强。而且蛋白脂质体放氧活性的证据表明,MGDG能促进微量天线的这种作用。
Resumo:
Background: Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. Results: In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions: Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII photosynthetic capabilities might be due to the differences in cell functions.
Resumo:
peptide composition and arrangement of 4 major light-harvesting complexes LHCP1-3 and LHCP3, isolated from siphonous green algae (Codium fragile (Sur.) Hariot.) were investigated. LHCP1 showed five main peptides, 34.4, 31.5, 29.5, 28.2 and 26.5 kD in SDS-PAGE, the 34.4 and 31.5 kD peptides were never found in higher plants. LHCP3 contained the other four kinds of LHCP1 peptides except 34.4 kD, while LHCP3, consisted of only 28.2 and 26.5 kD peptides. We found that 34.4, 28.2 and 26.5 kD peptides were easy to decompose from LHCP1 when subjected to SDS-PACE without pretreatment. They might be located at the exterior of LHCP1, while the 31.5 and 29.5 kD peptides were at the central part. The 28.2 and 26.5 kD peptides often occurred in CPa, the center complex of PS II. They are possibly the LHC II peptides tightly associated with CC II. According to the results described above, a peptide map of LHCP1 was sketched.
Resumo:
选择条斑紫菜(Porphyra yezoensis)两个不同发育阶段(孢子体和配子体)作为研究对象,分别从孢子体与配子体的类囊体膜上分离到具有高放氧活性的PSII复合物。配子体PSII复合物的放氧活性为2269.77±152.94 μmolO2/chl(mg).h,孢子体PSII复合物的放氧活性为2256.33±141.81 μmolO2/chl(mg).h。对分离到的PSII复合物的稳定性和放氧活性进行了研究,结果表明:孢子体和配子体的PSII复合物,在4℃条件下保存比-80℃下放氧活性高,稳定性高。配子体跟孢子体比较,在-80℃保存条件下第六天就已经没有放氧活性,而此时-80℃下孢子体PSII复合物仍然具有放氧活性。同时对4℃下保存的PSII复合物进行分子筛柱层析,室温吸收光谱测定以及放氧活性测定,发现随着放氧活性逐渐降低的同时,蛋白大分子有聚合现象。室温吸收光谱表明经过长期的保存,吸收峰向短波长方向偏移,同时叶绿素易降解成为脱镁叶绿素。分别测定了配子体与孢子体PSII复合物的SDS-PAGE电泳蛋白条带的氨基酸序列,配子体PSII复合物经过SDS-PAGE电泳后的蛋白条带,经过质谱测定,鉴定出CP-47、D2、D1蛋白。孢子体PSII复合物,经过SDS-PAGE电泳后的蛋白条带,经过质谱分析鉴定出CP-47、CP-43、D2、D1蛋白。CP-47, CP-43蛋为PSII反应中心叶绿素P680的脱辅基蛋白,D1 与D2蛋白为PSII的反应中心蛋白。对纯化的PSII复合物,并首次采用单颗粒技术分析比较其形态结构,电镜观察证实纯化的PSII复合物为二聚体,颗粒大小约为13nm×7.8nm,经过计算总分子量约为500kDa,但是孢子体与配子体的PSII复合物在形态上有轻微差别,配子PSII复合物要略宽于孢子体复合物,孢子体PSII复合物周边棱角形较配子体明显。
Resumo:
测定了管藻目绿藻刺松藻和假根羽藻的叶状体、叶绿体及类囊体膜的吸收光谱和低温荧光光谱,并同软丝藻等5种非管藻目绿藻和菠菜进行了比较。证实绿藻普遍缺少作为高等植物 PSI 标志的 730nm 的低温长波荧光,其长波发射峰在 710 ~ 715nm 以及 695nm 荧光也不明显。采用和的 PAGE 法从刺松藻、假根羽藻、软丝藻和菠菜中分别得到 11 种、11 种、7 种和 9 种色素蛋白复合物,并测定了各复合物的分子量、Chl a/b、叶绿素的分布、多肽组成和结构关系,以及吸收光谱、低温荧光发射和激发光谱等各种光谱特性。刺松藻和假根羽藻的 CPIa_(1-2) 复合物的荧光发射主峰分别在 698、690 和 685nm,软丝藻 CPIa 在 715nm,菠菜 CPIa_(1-2) 分别在 729 和 722nm。两种管藻目绿藻的 LHCI 与 CII 的结合程度较菠菜和软丝藻更紧密,其 CPI 复合物中仍含有一定量的,710 ~ 715nm 荧光呈隐现状态。用二次 PAGE 法将刺松藻和假根羽藻的 CPIa 和 CIP 再分离,得到 PSI 的捕光复合 LHCI,为管藻黄素-Chl a/b-蛋白复合物, Chl a/b=1.2,含有 27.5、26.2、26 和 24.5kDa 四种多肽,77K 荧光峰在 682 ~ 683nm。LHCI 没有发射高等植物 730nm 荧光的相应组分是管藻目绿藻缺少 730nm 荧光的主要原因。核心复合物 CCI 含有 67 和 56kDa 两种多肽,与软丝藻和菠菜相似,但 3 种藻类核心复合物的 77K 荧光峰在 715nm,而菠菜在 720nm。刺松藻和假根羽藻有 LHCI 存在时,715nm 荧光峰不明显,随着 LHCI 的解离,荧光逐渐显现。刺松藻 PSI 中与 CCI 结合最紧密的是 LHCI 的 27.5 和 24.5kDa 多肽,两个 26 kDa 多肽的结合较为松散。用差速离心法对刺松藻、假根羽藻、软丝藻及菠菜的 PSI 颗粒进行了初步的分离。PSI 粗提物的 77K 长波荧光发射峰分别在 710、712、713 和 730nm,与 PAGE 法得到的结果相符。刺松藻和假根羽藻的 PSII 核心复合物 CPa 与菠菜相同,都含有两个 33kDa 核心多肽及 40 ~ 47 kDa 的内天线蛋白。从两种管藻目绿藻中首次分离到 6 种 LHCII 捕光复合物,其中 LHCP_(1-3),四种都是管藻黄素- Chl a/b-蛋白复合物, Chl a/b=0.7 ~ 0.9。刺松藻和假根羽藻中含量最高、最稳定的捕光复合物是分子量最大的 LHCP_1 由 34.4、31.5、29.5、28.1 和 26.5kDa 多肽构成,其中 34.4 和 31.5kDa 多肽在菠菜和软丝藻中没有对应组分。LHCP_1 再分离结果表明,分子量较小的捕光复合物都是 LHCP_1 的组成部分,但分子量最小的 Fca_1 和 Fca_2 与其它复合物的关系尚不确定。31.5 和 29.5 kDa 多肽是 LHCP_1 的核心,34.4、28.1 和 26.5kDa 多肽位于外侧;整个 LHCP_1 以 28.1 和 26.5kDa 多肽与 CCII 紧密结合,构成 PSII。根据刺松藻和假根羽藻光系统结构及其特异性的研究结果,提出了一个管藻目绿藻 PSI 和 PSII 色素蛋白复合物结构关系模型,并与高等植物的模型做了比较。讨论了光合作用两个光系统结构和特性的进化过程,指出 730nm 低温荧光峰不能作为管藻目乃至非管藻目绿藻 PSI 的表征。管藻目绿藻同杂色藻类在这方面有相似性。
Resumo:
The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.