899 resultados para PROSTATE CANCER-ASSOCIATED STROMAL CELLS
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.
Resumo:
Previous studies on monocarboxylate transporters expression in prostate cancer (PCa) have shown that monocarboxylate transporter 2 (MCT2) was clearly overexpressed in prostate malignant glands, pointing it out as a putative biomarker for PCa. However, its localization and possible role in PCa cells remained unclear. In this study, we demonstrate that MCT2 localizes mainly at peroxisomes in PCa cells and is able to take advantage of the peroxisomal transport machinery by interacting with Pex19. We have also shown an increase in MCT2 expression from non-malignant to malignant cells that was directly correlated with its peroxisomal localization. Upon analysis of the expression of several peroxisomal ß-oxidation proteins in PIN lesions and PCa cells from a large variety of human prostate samples, we suggest that MCT2 presence at peroxisomes is related to an increase in ß -oxidation levels which may be crucial for malignant transformation. Our results present novel evidence that may not only contribute to the study of PCa development mechanisms but also pinpoint novel targets for cancer therapy.
Resumo:
Metabolic adaptation is considered an emerging hallmark of cancer, whereby cancer cells exhibit high rates of glucose consumption with consequent lactate production. To ensure rapid efflux of lactate, most cancer cells express high levels of monocarboxylate transporters (MCTs), which therefore may constitute suitable therapeutic targets. The impact of MCT inhibition, along with the clinical impact of altered cellular metabolism during prostate cancer (PCa) initiation and progression, has not been described. Using a large cohort of human prostate tissues of different grades, in silico data, in vitro and ex vivo studies, we demonstrate the metabolic heterogeneity of PCa and its clinical relevance. We show an increased glycolytic phenotype in advanced stages of PCa and its correlation with poor prognosis. Finally, we present evidence supporting MCTs as suitable targets in PCa, affecting not only cancer cell proliferation and survival but also the expression of a number of hypoxia-inducible factor target genes associated with poor prognosis. Herein, we suggest that patients with highly glycolytic tumours have poorer outcome, supporting the notion of targeting glycolytic tumour cells in prostate cancer through the use of MCT inhibitors.
Resumo:
Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
Resumo:
The acquisition of neuroendocrine (NE) characteristics by prostate cancer (PCa) cells is closely related to tumour progression and hormone resistance. The mechanisms by which NE cells influence PCa growth and progression are not fully understood. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in oncogenic processes, and MIF serum levels correlate with aggressiveness of PCa. Here, we investigated the regulation and the functional consequences of MIF expression during NE transdifferentiation of PCa cells. NE differentiation (NED) of LNCaP cells, initiated either by increasing intracellular levels of cAMP or by culturing cells in an androgen-depleted medium, was associated with markedly increased MIF release. Yet, intracellular MIF protein and mRNA levels and MIF gene promoter activity decreased during NED of LNCaP cells, suggesting that NED favours MIF release despite decreasing MIF synthesis. Adenoviral-mediated forced MIF expression in NE-differentiated LNCaP cells increased cell proliferation without affecting the expression of NE markers. Addition of exogenous recombinant MIF to LNCaP and PC-3 cells stimulated the AKT and ERK1/2 signalling pathways, the expression of genes involved in PCa, as well as proliferation and resistance to paclitaxel and thapsigargin-induced apoptosis. Altogether, these data provide evidence that increased MIF release during NED in PCa may facilitate cancer progression or recurrence, especially following androgen deprivation. Thus, MIF could represent an attractive target for PCa therapy.
Resumo:
Introduction: Au Canada, le cancer de la prostate est le cancer le plus fréquemment diagnostiqué chez les hommes et le plus mortel après les cancers du poumon et du côlon. Il y a place à optimiser le traitement du cancer de la prostate de manière à mettre en œuvre une médecine personnalisée qui s’adapte aux caractéristiques de la maladie de chaque patient de façon individuelle. Dans ce mémoire, nous avons évalué la réponse aux dommages de l’ADN (RDA) comme biomarqueur potentiel du cancer de la prostate. Les lésions potentiellement oncogènes de l'ADN déclenche une cascade de signalisation favorisant la réparation de l'ADN et l’activation des points de contrôle du cycle cellulaire pour préserver l’intégrité du génome. La RDA est un mécanisme central de suppression tumorale chez l’homme. La RDA joue un rôle important dans l’arrêt de la prolifération des cellules dont les génomes sont compromis, et donc, prévient la progression du cancer en agissant comme une barrière. Cette réponse cellulaire détermine également comment les cellules normales et cancéreuses réagissent aux agents utilisés pour endommager l'ADN lors du traitement du cancer comme la radiothérapie ou la chimiothérapie, en plus la présence d,un certain niveau de RDA dans les cellules du cancer de la prostate peuvent également influer sur l'issue de ces traitements. L’activation des signaux de la RDA peut agir comme un frein au cancer dans plusieurs lésions pré-néoplasiques de l'homme, y compris le cancer de la prostate. Il a été démontré que la RDA est augmentée dans les cellules de néoplasie intra- épithéliale (PIN) comparativement aux cellules prostatiques normales. Toutefois, le devient de la RDA entre le PIN et l’adénocarcinome est encore mal documenté et aucune corrélation n'a été réalisée avec les données cliniques des patients. Notre hypothèse est que les niveaux d’activation de la RDA seront variables selon les différents grades et agressivité du cancer de la prostate. Ces niveaux pourront être corrélés et possiblement prédire les réponses cliniques aux traitements des patients et aider à définir une stratégie plus efficace et de nouveaux biomarqueurs pour prédire les résultats du traitement et personnaliser les traitements en conséquence. Nos objectifs sont de caractériser l'activation de la RDA dans le carcinome de la prostate et corréler ses données avec les résultats cliniques. Méthodes : Nous avons utilisé des micro-étalages de tissus (tissue microarrays- TMAs) de 300 patients ayant subi une prostatectomie radicale pour un cancer de la prostate et déterminé le niveau d’expression de protéines de RDA dans le compartiment stromal et épithélial des tissus normaux et cancéreux. Les niveaux d’expression de 53BP1, p-H2AX, p65 et p-CHK2 ont été quantifiés par immunofluorescence (IF) et par un logiciel automatisé. Ces marqueurs de RDA ont d’abord été validés sur des TMAs-cellule constitués de cellules de fibroblastes normales ou irradiées (pour induire une activation du RDA). Les données ont été quantifiées à l'aide de couches binaires couramment utilisées pour classer les pixels d'une image pour que l’analyse se fasse de manière indépendante permettant la détection de plusieurs régions morphologiques tels que le noyau, l'épithélium et le stroma. Des opérations arithmétiques ont ensuite été réalisées pour obtenir des valeurs correspondant à l'activation de la RDA qui ont ensuite été corrélées à la récidive biochimique et l'apparition de métastases osseuses. Résultats : De faibles niveaux d'expression de la protéine p65 dans le compartiment nucléaire épithélial du tissu normal de la prostate sont associés à un faible risque de récidive biochimique. Par ailleurs, nous avons aussi observé que de faibles niveaux d'expression de la protéine 53BP1 dans le compartiment nucléaire épithéliale du tissu prostatique normal et cancéreux ont été associés à une plus faible incidence de métastases osseuses. Conclusion: Ces résultats confirment que p65 a une valeur pronostique chez les patients présentant un adénocarcinome de la prostate. Ces résultats suggèrent également que le marqueur 53BP1 peut aussi avoir une valeur pronostique chez les patients avec le cancer de la prostate. La validation d'autres marqueurs de RDA pourront également être corrélés aux résultats cliniques. De plus, avec un suivi des patients plus long, il se peut que ces résultats se traduisent par une corrélation avec la survie. Les niveaux d'activité de la RDA pourront éventuellement être utilisés en clinique dans le cadre du profil du patient comme le sont actuellement l’antigène prostatique spécifique (APS) ou le Gleason afin de personnaliser le traitement.
Resumo:
BACKGROUND: Due to the heterogeneity in the biological behavior of prostate cancer, biomarkers that can reliably distinguish indolent from aggressive disease are urgently needed to inform treatment choices. METHODS: We employed 8-plex isobaric Tags for Relative and Absolute Quantitation (iTRAQ), to profile the proteomes of two distinct panels of isogenic prostate cancer cells with varying growth and metastatic potentials, in order to identify novel biomarkers associated with progression. The LNCaP, LNCaP-Pro5, and LNCaP-LN3 panel of cells represent a model of androgen-responsive prostate cancer, while the PC-3, PC-3M, and PC-3M-LN4 panel represent a model of androgen-insensitive disease. RESULTS: Of the 245 unique proteins identified and quantified (>or=95% confidence; >or=2 peptides/protein), 17 showed significant differential expression (>or=+/-1.5), in at least one of the variant LNCaP cells relative to parental cells. Similarly, comparisons within the PC-3 panel identified 45 proteins to show significant differential expression in at least one of the variant PC-3 cells compared with parental cells. Differential expression of selected candidates was verified by Western blotting or immunocytochemistry, and corresponding mRNA expression was determined by quantitative real-time PCR (qRT-PCR). Immunostaining of prostate tissue microarrays for ERp5, one of the candidates identified, showed a significant higher immunoexpression in pre-malignant lesions compared with non-malignant epithelium (P < 0.0001, Mann-Whitney U-test), and in high Gleason grade (4-5) versus low grade (2-3) cancers (P < 0.05). CONCLUSIONS: Our study provides proof of principle for the application of an 8-plex iTRAQ approach to uncover clinically relevant candidate biomarkers for prostate cancer progression.
Resumo:
The mammalian lignan, enterolactone, has been shown to reduce the proliferation of the earlier stages of prostate cancer at physiological concentrations in vitro. However, efficacy in the later stages of the disease occurs at concentrations difficult to achieve through dietary modification. We have therefore investigated what concentration(s) of enterolactone can restrict proliferation in multiple stages of prostate cancer using an in vitro model system of prostate disease. We determined that enterolactone at 20 μM significantly restricted the proliferation of mid and late stage models of prostate disease. These effects were strongly associated with changes in the expression of the DNA licencing genes (GMNN, CDT1, MCM2 and 7), in reduced expression of the miR-106b cluster (miR-106b, miR-93, and miR-25), and in increased expression of the PTEN tumour suppressor gene. We have shown anti-proliferative effects of enterolactone in earlier stages of prostate disease than previously reported and that these effects are mediated, in part, by microRNA-mediated regulation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation.
Resumo:
OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.
Resumo:
BACKGROUND: Number of intratumoral mast cells predicts survival in various cancers. The prognostic significance of such mast cells in surgically treated prostate cancer is unknown. METHODS: Mast cell densities were determined in prostate cancer samples of more than 2,300 hormone-naïve patients using a tissue microarray format in correlation with clinical follow-up data. Mast cells were visualized immunohistochemically (c-kit). All patients were homogeneously treated by radical prostatectomy at a single institution. RESULTS: Mast cells were present in 95.9% of the tumor samples. Median mast cell number on the tissue spot was 9 (range: 0-90; median density: 31 mast cells/mm(2)). High mast cell densities were significantly associated with more favorable tumors having lower preoperative prostate-specific antigen (P = 0.0021), Gleason score (P < 0.0001) and tumor stage (P < 0.0001) than tumors with low mast cell densities. Prostate-specific antigen recurrence-free survival significantly (P = 0.0001) decreased with decline of mast cell density showing poorest outcome for patients without intratumoral mast cells. In multivariate analysis mast cell density narrowly missed to add independent prognostic information (P = 0.0815) for prostate-specific antigen recurrence. CONCLUSION: High intratumoral mast cell density is associated with favorable tumor characteristics and good prognosis in prostate cancer. This finding is consistent with a role of mast cells in the immunological host-defense reaction on prostate cancer. Triggering mast cell activity might expand immunotherapeutic strategies in prostate cancer.
Resumo:
Osseous metastases account for most of the morbidity and mortality associated with prostate cancer, for which there are currently no effective therapies. In the skeletal metastatic environment, neoplastic prostatic epithelial cells interact in a bidirectional stimulatory manner with osteoblastic stromal cells. Similarly, the presence of osteoblastic cells is essential for the survival and maintenance of intraosseous prostate cancer cells. In this thesis, I have developed novel gene therapy strategies for the treatment of androgen-independent human prostate cancers in experimental animal models. First, Ad-CMV-p53, a recombinant adenovirus (Ad) containing p53 tumor suppressor gene driven by the universal cytomegalovirus promoter, was effective in inhibiting prostate cancer cell growth, and direct intratumoral injections of Ad-CMV-p53 resulted in tumor regression. Second, because prostate cancer cells as well as osteoblastic cells produce osteocalcin (OC), OC promoter mediated tissue/tumor specific toxic gene therapy is developed to interrupt stromal-epithelial communications by targeting both cell types. Ad-OC-TK, a recombinant Ad containing the herpes simplex virus thymidine kinase (TK) gene driven by the OC promoter, was generated to inhibit the growth of osteoblastic osteosarcoma with prodrug acyclovir (ACV). Ad-OC-TK/ACV also inhibited the growth of prostate cancer cells and suppressed the growth of subcutaneous and intraosseous prostate tumor. In order to combine treatment modalities to maximize tumor cell-kill with minimized host toxicities, Ad-OC-TK/ACV was applied in combination with low dose methotrexate to eradicate osteoblastic osteosarcoma. In targeting of micrometastatic disease, intravenous Ad-OC-TK/ACV treatment resulted in significant tumor nodule reduction and prolonged the survival of animals harboring osteosarcoma lung metastases without significant host toxicity. Ad-OC-TK is a rational choice for the treatment of prostate cancer skeletal metastasis because OC is uniformly detected in both primary and metastatic human prostate cancer specimens by immunohistochemistry. Ad-OC-TK/ACV inhibits the growth not only of prostate cancer cells but also of their supporting bone stromal cells. Targeting both prostate cancer epithelium and its supporting stroma may be most efficacious for the treatment of prostate cancer osseous metastases. ^
Resumo:
BACKGROUND The number of cells positive for the α-6 and α-2 integrin subunits and the c-Met receptor in primary tumors and bone biopsies from prostate cancer patients has been correlated with metastasis and disease progression. The objective of this study was to quantify disseminated tumour cells present in bone marrow in prostate cancer patients using specific markers and determine their correlation with metastasis and survival. METHODS Patients were included at different stage of prostate cancer disease, from localised to metastatic castration-resistant prostate cancer. Healthy men were used as a control group. Bone marrow samples were collected and nucleated cells separated. These were stained for CD45, α-2, α-6 integrin subunits and c-Met and samples were processed for analysis and quantification of CD45-/α2+/α6+/c-met + cells using flow cytometry. Clinical and pathological parameters were assessed and survival measured. Statistical analyses were made of associations between disease specific parameters, bone marrow flow cytometry data, prostate-specific antigen (PSA) progression free survival and bone metastases progression free survival. RESULTS For all markers, the presence of more than 0.1% positive cells in bone marrow aspirates was significantly associated with the risk of biochemical progression, the risk of developing metastasis and death from prostate cancer. CONCLUSIONS Quantification of cells carrying putative stem cell markers in bone marrow is a potential indicator of disease progression. Functional studies on isolated cells are needed to show more specifically their property for metastatic spread in prostate cancer.
Resumo:
BACKGROUND There is evidence that tumour-stroma interactions have a major role in the neoplastic progression of pancreatic ductal adenocarcinoma (PDAC). Tumour budding is thought to reflect the process of epithelial-mesenchymal transition (EMT); however, the relationship between tumour buds and EMT remains unclear. Here we characterize the tumour-budding- and stromal cells in PDAC at protein and mRNA levels concerning factors involved in EMT. METHODS mRNA in situ hybridisation and immunostaining for E-cadherin, β-catenin, SNAIL1, ZEB1, ZEB2, N-cadherin and TWIST1 were assessed in the main tumour, tumour buds and tumour stroma on multipunch tissue microarrays from 120 well-characterised PDACs and associated with the clinicopathological features, including peritumoural (PTB) and intratumoural (ITB) budding. RESULTS Tumour-budding cells showed increased levels of ZEB1 (P<0.0001) and ZEB2 (P=0.0119) and reduced E-cadherin and β-catenin (P<0.0001, each) compared with the main tumour. Loss of membranous β-catenin in the main tumour (P=0.0009) and tumour buds (P=0.0053), without nuclear translocation, as well as increased SNAIL1 in tumour and stromal cells (P=0.0002, each) correlated with high PTB. ZEB1 overexpression in the main tumour-budding and stromal cells was associated with high ITB (P=0.0084; 0.0250 and 0.0029, respectively) and high PTB (P=0.0005; 0.0392 and 0.0007, respectively). ZEB2 overexpression in stromal cells correlated with higher pT stage (P=0.03), lymphatic invasion (P=0.0172) and lymph node metastasis (P=0.0152). CONCLUSIONS In the tumour microenvironment of phenotypically aggressive PDAC, tumour-budding cells express EMT hallmarks at protein and mRNA levels underlining their EMT-type character and are surrounded by stromal cells expressing high levels of the E-cadherin repressors ZEB1, ZEB2 and SNAIL1, this being strongly associated with the tumour-budding phenotype. Moreover, our findings suggest the existence of subtypes of stromal cells in PDAC with phenotypical and functional heterogeneity.