999 resultados para PRIMARY TOOTH DENTIN
Resumo:
Secondary caries has been reported as the main reason for restoration replacement. The aim of this in vitro study was to evaluate the performance of different methods - visual inspection, laser fluorescence (DIAGNOdent), radiography and tactile examination - for secondary caries detection in primary molars restored with amalgam. Fifty-four primary molars were photographed and 73 suspect sites adjacent to amalgam restorations were selected. Two examiners evaluated independently these sites using all methods. Agreement between examiners was assessed by the Kappa test. To validate the methods, a caries-detector dye was used after restoration removal. The best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve (Az), and the sensitivity, specificity and accuracy of the methods were calculated for enamel (D2) and dentine (D3) thresholds. These parameters were found for each method and then compared by the McNemar test. The tactile examination and visual inspection presented the highest inter-examiner agreement for the D2 and D3 thresholds, respectively. The visual inspection also showed better performance than the other methods for both thresholds (Az = 0.861 and Az = 0.841, respectively). In conclusion, the visual inspection presented the best performance for detecting enamel and dentin secondary caries in primary teeth restored with amalgam.
Resumo:
The aim of this study was to assess in vitro the influence of Er:YAG laser irradiation distance on the shear strength of the bond between an adhesive restorative system and primary dentin. A total of 60 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface and were randomly assigned to six groups (n = 10). The control group was etched with 37% phosphoric acid. The remaining five groups were irradiated (80 mJ, 2 Hz) at different irradiation distances (11, 12, 16, 17 and 20 mm), followed by acid etching. An adhesive agent (Single Bond) was applied to the bonding sites, and resin cylinders (Filtek Z250) were prepared. The shear bond strength tests were performed in a universal testing machine (0.5 mm/min). Data were submitted to statistical analysis using one-way ANOVA and the Kruskal-Wallis test (p < 0.05). The mean shear bond strengths were: 7.32 +/- 3.83, 5.07 +/- 2.62, 6.49 +/- 1.64, 7.71 +/- 0.66, 7.33 +/- 0.02, and 9.65 +/- 2.41 MPa in the control group and the groups irradiated at 11, 12, 16, 17, and 20 mm, respectively. The differences between the bond strengths in groups II and IV and between the bond strengths in groups II and VI were statistically significant (p < 0.05). Increasing the laser irradiation distance resulted in increasing shear strength of the bond to primary dentin.
Resumo:
This study aimed to assess in vitro thermal alterations taking place during the Er:YAG laser cavity preparation of primary tooth enamel at different energies and pulse repetition rates. Forty healthy human primary molars were bisected in a mesio-distal direction, thus providing 80 fragments. Two small orifices were made on the dentin surface to which type K thermocouples were attached. The fragments were individually fixed with wax in a cylindrical PlexiglassA (R) abutment and randomly assigned to eight groups, according to the laser parameters (n = 10): G1 -aEuro parts per thousand 250 mJ/ 3 Hz, G2 -aEuro parts per thousand 250 mJ/ 4 Hz, G3 -aEuro parts per thousand 250 mJ/ 6 Hz, G4 -aEuro parts per thousand 250 mJ/10 Hz, G5 -aEuro parts per thousand 250 mJ/ 15 Hz, G6 -aEuro parts per thousand 300 mJ/ 3 Hz, G7 -aEuro parts per thousand 300 mJ/ 4 Hz and G8 -aEuro parts per thousand 300 mJ/ 6 Hz. An area of 4 mm(2) was delimited. Cavities were done (2 mm long x 2 mm wide x 1 mm thick) using non-contact (12 mm) and focused mode. Temperature values were registered from the start of laser irradiation until the end of cavity preparation. Data were analyzed by one-way ANOVA and Tukey test (p a parts per thousand currency signaEuro parts per thousand 0.05). Groups G1, G2, G6, and G7 were statistically similar and furnished the lowest mean values of temperature rise. The set 250 mJ/10 and 15 Hz yielded the highest temperature values. The sets 250 and 300 mJ and 6 Hz provided temperatures with mean values below the acceptable critical value, suggesting that these parameters ablate the primary tooth enamel. Moreover, the temperature elevation was directly related to the increase in the employed pulse repetition rates. In addition, there was no direct correlation between temperature rise and energy density. Therefore, it is important to use a lower pulse frequency, such as 300 mJ and 6 Hz, during cavity preparation in pediatric patients.
Resumo:
Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.
Resumo:
This case report outlines the sequel and possible management of a permanent tooth traumatized through the predecessor, a maxillary right primary central incisor that was avulsed and replanted by a dentist 1 h after the trauma in a 3-year-old girl. Three years later, discoloration and fistula were present, so the primary tooth was extracted. The patient did not come to the scheduled follow-ups to perform a clinical and radiographic control of the succeeding permanent incisor, and only returned when she was 10 years old. At that moment, the impaction and dilaceration of the maxillary right permanent central incisor were observed through radiographic examination. The dilacerated permanent tooth was then surgically removed, and an esthetic fixed appliance was constructed with the crown of the extracted tooth. Positive psychological influence of the treatment on this patient was also observed.
Resumo:
The aims of this study were to analyze the histomorphology of developing permanent teeth whose primary teeth had suffered traumatic intrusion, as well as to compare the influence of immediate extraction of the intruded tooth to passive re-eruption. Nine dogs from 45 to 50 days old were submitted to the intrusion of the maxillary central and lateral primary incisors using a force applicator adapted to the teeth incisal cuspids. The right side intruded teeth were kept in their sockets and the ones on the left side were extracted 30 min later. After a postoperatory periods of 30 and 60 days, four (group 1) and five (group 2) dogs, respectively, were killed by perfusion. The histological evaluations showed that, in group 1, alterations had occurred in the odontoblastic layer and deposition of the enamel matrix had taken place in some specimens while in group 2, a portion of non-mineralized matrix was observed. We concluded that the morphological changes were because of the immediate trauma of intrusion. No differences were found between the groups where the primary tooth was immediately extracted or left to passively re-erupt.
Resumo:
Objective: To evaluate 2 techniques for the treatment of human primary molars with necrotic Pulp and bifurcation bone loss by means of radiographic examination for 48 months. Method and Materials: Fifty-one mandibular primary molars were evaluated in children ranging from 4.5 to 6.5 years of age. The teeth with necrotic pulp and bifurcation bone loss were diagnosed by radiographic examination. The teeth were divided into 2 groups: group 1 (28 teeth)-pulpotomy technique using formocresol as a temporary dressing between sessions and coronal chamber obturation with zinc oxide-eugenol cement; and group 2 (23 teeth)-pulpectomy technique with calcium hydroxide paste as a temporary dressing between sessions and root canal obturation with a dense Calcium hydroxide paste. Standardized radiographs were taken immediately after the fillings were completed and after 12, 24, 36, and 48 months. The radiographs were digitized and analyzed with software that outlined and measured the bifurcation radiolucency. Results: Bifurcation radiolucency reduced significantly or repaired completely for both treatnients in the first 12 months. Minor radiographic reduction of the lesion was observed from 12 to 24 months, and no significant reduction of the remaining radioulcent area was observed from 24 to 48 months after treatment. Conclusion: The 2 endodontic techniques evaluated showed similar results. The main effect of treatment on the lesion repair was obtained in the first year after treatment.
Resumo:
Objective: the aim of this in vitro study was to assess the effect of tip diameter, nozzle distance, and application time of an air-abrasion system for cavity preparation on the enamel of primary teeth. Method and materials: Forty exfoliated primary teeth were air abraded with a microabrasion machine used with a handpiece with an 80-degree-angle nozzle, 50-mum abrasive particle size, and 80-psi air pressure. The effects of 0.38- or 0.48-mm inner tip diameter, 2- or 5-mm distance from tip to tooth surface, and 15 or 30 seconds of application time on cutting efficiency were evaluated. Cutting width and depth were analyzed and measured from scanning electron micrographs. Results: Statistical analysis revealed that the width of the cuts was significantly greater when the tip distance was increased. Significantly deeper cavities were produced by a tip with a 0.48-mm inner diameter. The application time did not influence the cuts. Conclusion: the cutting patterns found in this study suggest that precise removal of enamel in primary teeth is best accomplished when a tip with a 0.38-mm inner diameter is used at a 2-mm distance.
Resumo:
Since the use of air abrasion has grown in pediatric dentistry, the aim of this study was to evaluate, by means of shear bond strength testing, the need to use the total etching technique or self-etching primers on dentin of primary teeth after air abrasion. Twenty-five exfoliated primary molars had their occlusal dentin exposed by trimming and polishing. Specimens were treated by: Air abrasion + Scotchbond MultiPurpose adhesive (G1); 37% phosphoric acid + Scotchbond MP adhesive (G2); Clearfil SE (G3); Air abrasion ( 37% phosphoric acid + Scotchbond MP adhesive (G4); Air abrasion + Clearfil SE (G5). On the treated surface, a cylinder of 2 mm by 6 mm was made using a composite resin (Z100). Duncan's test showed that: (G2 = G3 = G5) > (G1 = G4). The use of a selfetching primer on air abraded dentin is recommended to obtain higher bond strengths.
Resumo:
Aim: This in vitro study evaluated the accuracy of primary incisor lengths determined by digital and conventional radiography compared to the actual tooth length. Methods: Twenty extracted primary maxillary incisors were mounted in acrylic blocks. Tooth length was estimated by using a straight-line measurement provided by the distance measurement tool of a digital dental imaging system (Computed Dental Radiography, Schick Technologies Inc.) and conventional E-speed film radiographs by using a digital caliper. Two operators familiar with both radiographic methods performed the estimates. The estimated tooth lengths were compared to the actual tooth lengths measured with the digital caliper. Data were statistically analyzed by Dahlberg's equation, paired t test, Pearson's correlation coefficient and ANOVA at 5% significance level. Results: There were no statistically significant differences (p = 0.85) between tooth length estimated on digital and conventional radiographs. Admitting as clinically acceptable a 0.5-mm discrepancy between the actual tooth lengths and the radiographically estimated lengths, 60% of the radiographic measurements were considered as accurate. When the acceptable difference range was 1.0 mm, the accuracy of the radiographic measurements increased to 100%. Conclusions: Digital and conventional radiography provided similar tooth length measurements and were equivalent to the actual tooth lengths.
Resumo:
Regional odontodysplasia (RO) is a rare disorder of dental development. The affected teeth are clinically hypoplastic and hypocalcified, presenting a ghost-like appearance radiographically. The aim of this work was to report a clinical case of a child with both primary and permanent dentition affected by RO. The conducted therapy was based on a conservative approach, which consisted of follow-up clinical evaluations of the anomalous teeth. However, the endodontic treatment of the primary incisors failed. Then, the chosen option for patient rehabilitation became extraction followed by removable of prosthesis confection. The extracted teeth were processed for histological analysis. In spite of the uncertain prognosis, but taking into account the psychological aspects of the patient, a conservative approach in an attempt to maintain those viable teeth in the oral cavity should be established.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: avaliar a influência da condição socioeconômica na prevalência de má oclusão na dentição decídua em uma população amazônica. MÉTODOS: esse estudo transversal compreendeu 652 crianças, de ambos os sexos, entre 3 e 6 anos de idade. Os indivíduos estavam matriculados na pré-escola na rede privada de ensino (alto nível socioeconômico; n = 312) ou, rede pública (baixo nível socioeconômico; n = 340), em Belém, no Pará. O teste chi-quadrado e estatística binominal foram usados para avaliar as diferenças entre os grupos socioeconômicos, com nível de significância considerado em p < 0,05. RESULTADOS: foi observada uma alta prevalência de má oclusão (81,44%) na amostra examinada. As meninas das escolas públicas exibiram uma prevalência significativamente menor (72,1%) em comparação às das escolas privadas (84,7%), principalmente com relação à prevalência da má oclusão de Classe II (p < 0,0001), mordida cruzada posterior (p = 0,006), sobremordida (p = 0,005) e sobressaliência (p < 0,0001). De maneira geral, a prevalência de má oclusão foi similar entre as crianças do sexo masculino dos dois grupos (p = 0,36). A perda precoce de dente decíduo foi significativamente mais prevalente no grupo com menor nível socioeconômico (20,9%) quando comparada à de crianças nas escolas privadas (0.9%), em ambos os sexos (p < 0,0001). CONCLUSÃO: a condição socioeconômica influencia a ocorrência de má oclusão na dentição decídua. Na maior metrópole da Amazônia, uma em cada cinco crianças do grupo com baixo nível socioeconômico perdeu, no mínimo, um dente decíduo antes dos sete anos.
Resumo:
Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent–dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24 h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.