929 resultados para PREDICTIVE PERFORMANCE
Resumo:
Background: Currently used Trauma and Injury Severity Score (TRISS) coefficients, which measure probability of survival (Ps), were derived from the Major Trauma Outcome Study (MTOS) in 1995 and are now unlikely to be optimal. This study aims to estimate new TRISS coefficients using a contemporary database of injured patients presenting to emergency departments in the United States; and to compare these against the MTOS coefficients.---------- Methods: Data were obtained from the National Trauma Data Bank (NTDB) and the NTDB National Sample Project (NSP). TRISS coefficients were estimated using logistic regression. Separate coefficients were derived from complete case and multistage multiple imputation analyses for each NTDB and NSP dataset. Associated Ps over Injury Severity Score values were graphed and compared by age (adult ≥ 15 years; pediatric < 15 years) and injury mechanism (blunt; penetrating) groups. Area under the Receiver Operating Characteristic curves was used to assess coefficients’ predictive performance.---------- Results: Overall 1,072,033 NTDB and 1,278,563 weighted NSP injury events were included, compared with 23,177 used in the original MTOS analyses. Large differences were seen between results from complete case and imputed analyses. For blunt mechanism and adult penetrating mechanism injuries, there were similarities between coefficients estimated on imputed samples, and marked divergences between associated Ps estimated and those from the MTOS. However, negligible differences existed between area under the receiver operating characteristic curves estimates because the overwhelming majority of patients had minor trauma and survived. For pediatric penetrating mechanism injuries, variability in coefficients was large and Ps estimates unreliable.---------- Conclusions: Imputed NTDB coefficients are recommended as the TRISS coefficients 2009 revision for blunt mechanism and adult penetrating mechanism injuries. Coefficients for pediatric penetrating mechanism injuries could not be reliably estimated.
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.
Resumo:
Early models of bankruptcy prediction employed financial ratios drawn from pre-bankruptcy financial statements and performed well both in-sample and out-of-sample. Since then there has been an ongoing effort in the literature to develop models with even greater predictive performance. A significant innovation in the literature was the introduction into bankruptcy prediction models of capital market data such as excess stock returns and stock return volatility, along with the application of the Black–Scholes–Merton option-pricing model. In this note, we test five key bankruptcy models from the literature using an upto- date data set and find that they each contain unique information regarding the probability of bankruptcy but that their performance varies over time. We build a new model comprising key variables from each of the five models and add a new variable that proxies for the degree of diversification within the firm. The degree of diversification is shown to be negatively associated with the risk of bankruptcy. This more general model outperforms the existing models in a variety of in-sample and out-of-sample tests.
Resumo:
Alcohol and depression comorbidity is high and is associated with poorer outcomes following treatment. The ability to predict likely treatment response would be advantageous for treatment planning. Craving has been widely studied as a potential predictor, but has performed inconsistently. The effect of comorbid depression on craving's predictive performance however, has been largely neglected, despite demonstrated associations between negative affect and craving. The current study examined the performance of craving, measured pretreatment using the Obsessive subscale of the Obsessive Compulsive Drinking Scale, in predicting 18-week and 12-month post-treatment alcohol use outcomes in a sample of depressed drinkers. Data for the current study were collected during a randomized controlled trial (Baker, Kavanagh, Kay-Lambkin, Hunt, Lewin, Carr, & Connolly, 2010) comparing treatments for comorbid alcohol and depression. A subset of 260 participants from that trial with a Timeline Followback measure of alcohol consumption was analyzed. Pre-treatment craving was a significant predictor of average weekly alcohol consumption at 18 weeks and of frequency of alcohol binges at 18 weeks and 12months, but pre-treatment depressive mood was not predictive, and effects of Baseline craving were independent of depressive mood. Results suggest a greater ongoing risk from craving than from depressive mood at Baseline.
Resumo:
Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.
Resumo:
Background: Appropriate disposition of emergency department (ED) patients with chest pain is dependent on clinical evaluation of risk. A number of chest pain risk stratification tools have been proposed. The aim of this study was to compare the predictive performance for major adverse cardiac events (MACE) using risk assessment tools from the National Heart Foundation of Australia (HFA), the Goldman risk score and the Thrombolysis in Myocardial Infarction risk score (TIMI RS). Methods: This prospective observational study evaluated ED patients aged ≥30 years with non-traumatic chest pain for which no definitive non-ischemic cause was found. Data collected included demographic and clinical information, investigation findings and occurrence of MACE by 30 days. The outcome of interest was the comparative predictive performance of the risk tools for MACE at 30 days, as analyzed by receiver operator curves (ROC). Results: Two hundred eighty-one patients were studied; the rate of MACE was 14.1%. Area under the curve (AUC) of the HFA, TIMI RS and Goldman tools for the endpoint of MACE was 0.54, 0.71 and 0.67, respectively, with the difference between the tools in predictive ability for MACE being highly significant [chi2 (3) = 67.21, N = 276, p < 0.0001]. Conclusion: The TIMI RS and Goldman tools performed better than the HFA in this undifferentiated ED chest pain population, but selection of cutoffs balancing sensitivity and specificity was problematic. There is an urgent need for validated risk stratification tools specific for the ED chest pain population.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
A predictive model of terrorist activity is developed by examining the daily number of terrorist attacks in Indonesia from 1994 through 2007. The dynamic model employs a shot noise process to explain the self-exciting nature of the terrorist activities. This estimates the probability of future attacks as a function of the times since the past attacks. In addition, the excess of nonattack days coupled with the presence of multiple coordinated attacks on the same day compelled the use of hurdle models to jointly model the probability of an attack day and corresponding number of attacks. A power law distribution with a shot noise driven parameter best modeled the number of attacks on an attack day. Interpretation of the model parameters is discussed and predictive performance of the models is evaluated.
Resumo:
Species distribution models (SDMs) are considered to exemplify Pattern rather than Process based models of a species' response to its environment. Hence when used to map species distribution, the purpose of SDMs can be viewed as interpolation, since species response is measured at a few sites in the study region, and the aim is to interpolate species response at intermediate sites. Increasingly, however, SDMs are also being used to also extrapolate species-environment relationships beyond the limits of the study region as represented by the training data. Regardless of whether SDMs are to be used for interpolation or extrapolation, the debate over how to implement SDMs focusses on evaluating the quality of the SDM, both ecologically and mathematically. This paper proposes a framework that includes useful tools previously employed to address uncertainty in habitat modelling. Together with existing frameworks for addressing uncertainty more generally when modelling, we then outline how these existing tools help inform development of a broader framework for addressing uncertainty, specifically when building habitat models. As discussed earlier we focus on extrapolation rather than interpolation, where the emphasis on predictive performance is diluted by the concerns for robustness and ecological relevance. We are cognisant of the dangers of excessively propagating uncertainty. Thus, although the framework provides a smorgasbord of approaches, it is intended that the exact menu selected for a particular application, is small in size and targets the most important sources of uncertainty. We conclude with some guidance on a strategic approach to identifying these important sources of uncertainty. Whilst various aspects of uncertainty in SDMs have previously been addressed, either as the main aim of a study or as a necessary element of constructing SDMs, this is the first paper to provide a more holistic view.
Resumo:
Predictive models based on near infra-red spectroscopy for the assessment of fruit internal quality attributes must exhibit a degree of robustness across the parameters of variety, district and time to be of practical use in fruit grading. At the time this thesis was initiated, while there were a number of published reports on the development of near infra-red based calibration models for the assessment of internal quality attributes of intact fruit, there were no reports of the reliability ("robustness") of such models across time, cultivars or growing regions. As existing published reports varied in instrumentation employed, a re-analysis of existing data was not possible. An instrument platform, based on partial transmittance optics, a halogen light source and (Zeiss MMS 1) detector operating in the short wavelength near infra-red region was developed for use in the assessment of intact fruit. This platform was used to assess populations of macadamia kernels, melons and mandarin fruit for total soluble solids, dry matter and oil concentration. Calibration procedures were optimised and robustness assessed across growing areas, time of harvest, season and variety. In general, global modified partial least squares regression (MPLS) calibration models based on derivatised absorbance data were better than either multiple linear regression or `local' MPLS models in the prediction of independent validation populations . Robustness was most affected by growing season, relative to the growing district or variety . Various calibration updating procedures were evaluated in terms of calibration robustness. Random selection of samples from the validation population for addition to the calibration population was equivalent to or better than other methods of sample addition (methods based on the Mahalanobis distance of samples from either the centroid of the population or neighbourhood samples). In these exercises the global Mahalanobis distance (GH) was calculated using the scores and loadings from the calibration population on the independent validation population. In practice, it is recommended that model predictive performance be monitored in terms of predicted sample GH, with model updating using as few as 10 samples from the new population undertaken when the average GH value exceeds 1 .0 .
Resumo:
Species distribution modelling (SDM) typically analyses species’ presence together with some form of absence information. Ideally absences comprise observations or are inferred from comprehensive sampling. When such information is not available, then pseudo-absences are often generated from the background locations within the study region of interest containing the presences, or else absence is implied through the comparison of presences to the whole study region, e.g. as is the case in Maximum Entropy (MaxEnt) or Poisson point process modelling. However, the choice of which absence information to include can be both challenging and highly influential on SDM predictions (e.g. Oksanen and Minchin, 2002). In practice, the use of pseudo- or implied absences often leads to an imbalance where absences far outnumber presences. This leaves analysis highly susceptible to ‘naughty-noughts’: absences that occur beyond the envelope of the species, which can exert strong influence on the model and its predictions (Austin and Meyers, 1996). Also known as ‘excess zeros’, naughty noughts can be estimated via an overall proportion in simple hurdle or mixture models (Martin et al., 2005). However, absences, especially those that occur beyond the species envelope, can often be more diverse than presences. Here we consider an extension to excess zero models. The two-staged approach first exploits the compartmentalisation provided by classification trees (CTs) (as in O’Leary, 2008) to identify multiple sources of naughty noughts and simultaneously delineate several species envelopes. Then SDMs can be fit separately within each envelope, and for this stage, we examine both CTs (as in Falk et al., 2014) and the popular MaxEnt (Elith et al., 2006). We introduce a wider range of model performance measures to improve treatment of naughty noughts in SDM. We retain an overall measure of model performance, the area under the curve (AUC) of the Receiver-Operating Curve (ROC), but focus on its constituent measures of false negative rate (FNR) and false positive rate (FPR), and how these relate to the threshold in the predicted probability of presence that delimits predicted presence from absence. We also propose error rates more relevant to users of predictions: false omission rate (FOR), the chance that a predicted absence corresponds to (and hence wastes) an observed presence, and the false discovery rate (FDR), reflecting those predicted (or potential) presences that correspond to absence. A high FDR may be desirable since it could help target future search efforts, whereas zero or low FOR is desirable since it indicates none of the (often valuable) presences have been ignored in the SDM. For illustration, we chose Bradypus variegatus, a species that has previously been published as an exemplar species for MaxEnt, proposed by Phillips et al. (2006). We used CTs to increasingly refine the species envelope, starting with the whole study region (E0), eliminating more and more potential naughty noughts (E1–E3). When combined with an SDM fit within the species envelope, the best CT SDM had similar AUC and FPR to the best MaxEnt SDM, but otherwise performed better. The FNR and FOR were greatly reduced, suggesting that CTs handle absences better. Interestingly, MaxEnt predictions showed low discriminatory performance, with the most common predicted probability of presence being in the same range (0.00-0.20) for both true absences and presences. In summary, this example shows that SDMs can be improved by introducing an initial hurdle to identify naughty noughts and partition the envelope before applying SDMs. This improvement was barely detectable via AUC and FPR yet visible in FOR, FNR, and the comparison of predicted probability of presence distribution for pres/absence.
Resumo:
The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.