994 resultados para PRE-MESSENGER-RNAS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pathways from the introns and exons of longer primary transcripts, including protein-coding transcripts. Most show distinctive temporal- and tissue-specific expression patterns in different tissues, including embryonal stem cells and the brain, and some are imprinted. Small RNAs control a wide range of developmental and physiological pathways in animals, including hematopoietic differentiation, adipocyte differentiation and insulin secretion in mammals, and have been shown to be perturbed in cancer and other diseases. The extent of transcription of non-coding sequences and the abundance of small RNAs suggests the existence of an extensive regulatory network on the basis of RNA signaling which may underpin the development and much of the phenotypic variation in mammals and other complex organisms and which may have different genetic signatures from sequences encoding proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mammalian transcriptome contains many nonprotein-coding RNAs (ncRNAs), but most of these are of unclear significance and lack strong sequence conservation, prompting suggestions that they might be non-functional. However, certain long functional ncRNAs such as Air and Xist are also poorly conserved. In this article, we systematically analyzed the conservation of several groups of functional ncRNAs, including miRNAs, snoRNAs and longer ncRNAs whose function has been either documented or confidently predicted. As expected, miRNAs and snoRNAs were highly conserved. By contrast, the longer functional non-micro, non-sno ncRNAs were much less conserved with many displaying rapid sequence evolution. Our findings suggest that longer ncRNAs are under the influence of different evolutionary constraints and that the lack of conservation displayed by the thousands of candidate ncRNAs does not necessarily signify an absence of function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing evidence suggests that the development and function of the nervous system is heavily dependent on RNA editing and the intricate spatiotemporal expression of a wide repertoire of non-coding RNAs, including micro RNAs, small nucleolar RNAs and longer non-coding RNAs. Non-coding RNAs may provide the key to understanding the multi-tiered links between neural development, nervous system function, and neurological diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mammalian transcriptome harbours shadowy entities that resist classification and analysis. In analogy with pseudogenes, we define pseudo-messenger RNA to be RNA molecules that resemble protein- coding mRNA, but cannot encode full-length proteins owing to disruptions of the reading frame. Using a rigorous computational pipeline, which rules out sequencing errors, we identify 10,679 pseudo - messenger RNAs ( approximately half of which are transposonassociated) among the 102,801 FANTOM3 mouse cDNAs: just over 10% of the FANTOM3 transcriptome. These comprise not only transcribed pseudogenes, but also disrupted splice variants of otherwise protein- coding genes. Some may encode truncated proteins, only a minority of which appear subject to nonsense- mediated decay. The presence of an excess of transcripts whose only disruptions are opal stop codons suggests that there are more selenoproteins than currently estimated. We also describe compensatory frameshifts, where a segment of the gene has changed frame but remains translatable. In summary, we survey a large class of non- standard but potentially functional transcripts that are likely to encode genetic information and effect biological processes in novel ways. Many of these transcripts do not correspond cleanly to any identifiable object in the genome, implying fundamental limits to the goal of annotating all functional elements at the genome sequence level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The aim of the present study was to determine the effect of GaAlAs low-level laser therapy (LLLT) on collagen IV remodeling of the tibialis anterior (TA) muscle in rats after cryolesion. Background: Considerable interest exists in skeletal muscle regeneration in situations such as repair after exercise-induced muscle injury, after muscle transplantation, in muscular dystrophy, exercise-induced muscle injury, and the recovery of strength after atrophy due to disuse. A number of studies have demonstrated the potential of LLLT in facilitating the muscle-healing process; however, no consensus is found in the literature regarding the best laser-irradiation parameters. Methods: Adult male Wistar rats (n = 45) were used and randomly divided into three groups: control (n = 5); nontreated cryolesioned group (n = 20), and LLLT-cryolesioned group (n = 20). The cryolesioned groups were analyzed at 1, 7, 14, and 21 days after the injury procedure. Laser irradiation was performed 3 times per week on the injured region by using the GaAlAs laser (660 nm; beam spot of 0.04 cm(2), output power of 20 mW, power density of 500 mW/cm(2), and energy density of 5 J/cm(2), for 10 sec). The muscles were removed, frozen, cryosectioned, and then stained with hematoxylin-eosin for the visualization of general morphology or used for immunohistochemical analysis of collagen IV. Results: It was demonstrated that LLLT promotes an increase in collagen IV immunolabeling in skeletal muscle in the first 7 days after acute trauma caused by cryoinjury, but does not modify the duration of the tissue-repair process. Even with LLLT, the injured muscle tissue needs similar to 21 days to achieve the same state of organization as that in the noninjured muscle. Conclusion: The collagen IV content is modulated in regenerating skeletal muscle under LLLT, which might be associated with better tissue outcome, although the histologic analysis did not detect tissue improvement in the LLLT group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Papaya (Carica papaya) is a relevant tropical crop and physico-chemical changes take place very quickly, as a consequence of activation of biochemical pathways by de nova synthesis of several proteins. Thus, in order to have information on the changes in gene expression in ripening papaya, transcripts from the pulp of unripe and ripe fruit were profiled by differential-display RT-PCR (DDRT-PCR). Seventy transcript derived fragments (TDFs) isolated from gels were re-amplified by PCR and differential expression of 40 papaya genes was confirmed by reverse northern blotting. Twenty-nine positively cloned TDFs were sequenced, and 17 were putatively identified by homology search. Ten of these genes were downregulated during ripening and UDP-glucose glucosyltransferase, alpha-2 importin, RNase L inhibitor-like protein, and a syntaxin protein were identified. Among the up-regulated genes there was a carboxylesterase, an integral membrane Yip1 family protein, a glycosyl hydrolase family-like protein and an endopolygalacturonase. Considering their relatedness to papaya quality, the fragments of genes potentially implicated in carbohydrate metabolism and pulp softening may be considered of interest for further studies. According to the results, differential display was a feasible approach to investigate differences in gene expression during fruit ripening, and can provide interesting information about those fruits whose genomic data is scarce, as is the case of papayas. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a parr in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Significant progress has been achieved in elucidating the role of the plasma membrane Ca2+-ATPase in cellular Ca2+ homeostasis and physiology since the enzyme was first purified and physiology since the enzyme was first purified and cloned a number of years ago. The simple notion that the PM Ca2+-ATPase controls resting levels of [Ca2+](CYT) has been challenged by the complexity arising from the finding of four major isoforms and splice variants of the Ca2+ pump, and the finding that these are differentially localized in various organs and subcellular regions. Furthermore, the isoforms exhibit differential sensitivities to Ca2+, calmodulin, ATP, and kinase-mediated phosphorylation. The latter pathways of regulation can give rise to activation or inhibition of the Ca2+ pump activity, depending on the kinase and the particular Ca2+ pump isoform. Significant progress is being made in elucidating subtle and more profound roles of the PM Ca2+-ATPase in the control of cellular function. Further understanding of these roles awaits new studies in both transfected cells and intact organelles, a process that will be greatly aided by the development of new and selective Ca2+ pump inhibitors. (C) 1999 Elsevier Science Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The technique of polymerase chain reaction (PCR) differential display was used to detect alterations in gene expression after chronic alcohol administration. Male Wistar rats were treated with ethanol vapor for 14 days. The cDNA generated from mRNA isolated from the hippocampi of ethanol-treated and control animals was compared by PCR differential display. A differentially expressed cDNA fragment was used to screen mRNA samples by Northern analysis. The level of a mRNA was significantly elevated (x 2.5) in the hippocampus, but not the cortex of alcohol-treated rats up to 48 hr after withdrawal. Sequence analysis of the cDNA fragment revealed an almost perfect homology to rat mitochondrial NADH dehydrogenase subunit 4 mRNA. The selective induction of this mRNA in alcohol-treated rat brain areas suggests altered metabolic processes and possible dysfunction of the mitochondria. The technique of PCR differential display may prove useful in further analysis of gene expression during alcohol dependence and withdrawal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have observed in previous studies that 6-hydroxydopamine (6-OHDA)-induced lesions in the nigrostriatal dopamine (DA) system promote increases of the astroglial basic fibroblast growth factor (FGF-2, bFGF) synthesis in the ascending DA pathways, event that could be modified by adrenosteroid hormones. Here, we first evaluated the changes of microglial reactivity in relation to the FGF-2-mediated trophic responses in the lesioned nigrostriatal DA system. 6-OHDA was injected into the left side of the rat substantia nigra. The OX42 immunohistochemistry combined with stereology showed the time course of the microglial activation. The OX42 immunoreactivity (IR) was already increased in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA) 2 h after the 6-OHDA injection, peaked on day 7, and remained increased on the 14th day time-interval. In the neostriatum, OX42 immunoreactive (ir) microglial profiles increased at 24 h, peaked at 72 h, was still increased at 7 days but not 14 days after the 6-OHDA injection. Two-colour immunofluorescence analysis of the tyrosine hydroxylase (TH) and OX42 IRs revealed the presence of small patches of TH IR within the activated microglia. A decreased FGF-2 IR was seen in the cytoplasm of DA neurons of the SNc and VTA as soon as 2 h after 6-OHDA injection. The majority of the DA FGF-2 ir cells of these regions had disappeared 72 h after neurotoxin. The astroglial FGF-2 IR increased in the SNc and VTA, which peaked on day 7. Two-colour immunofluorescence and immunoperoxidase analyses of the FGF-2 and OX42 IRs revealed no FGF-2 IR within the reactive or resting microglia. Second, we have evaluated in a series of biochemical experiments whether adrenocortical manipulation can interfere with the nigral lesion and the state of local astroglial reaction, looking at the TH and GFAP levels respectively. Rats were adrenalectomized (ADX) and received a nigral 6-OHDA stereotaxical injection 2 days later and sacrificed up to 3 weeks after the DA lesion. Western blot analysis showed time-dependent decrease and elevation of TH and GFAP levels, respectively, in the lesioned versus contralateral midbrain sides, events potentiated by ADX and worsened by corticosterone replacement. ADX decreased the levels of FGF-2 protein (23 kDa isoform) in the lesioned side of the ventral midbrain compared contralaterally. The results indicate that reactive astroglia, but not reactive microglia, showed an increased FGF-2 IR in the process of DA cell degeneration induced by 6-OHDA. However, interactions between these glial cells may be relevant to the mechanisms which trigger the increased astroglial FGF-2 synthesis and thus may be related to the trophic state of DA neurons and the repair processes following DA lesion. The findings also gave further evidence that adrenocortical hormones may regulate astroglial-mediated trophic mechanisms and wound repair events in the lesioned DA system that may be relevant to the progression of Parkinson`s disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system (""glutamate chips"") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human SFRS9/SRp30c belongs to the SR family of splicing regulators. Despite evidence that members of this protein family may be targeted by arginine methylation, this has yet to be experimentally addressed. In this study, we found that SFRS9 is a target for PRMT1-mediated arginine methylation in vitro, and that it is immunoprecipitated from HEK-293 lysates by antibodies that recognize both mono- and dimethylated arginines. We further observed that upon treatment with the methylation inhibitor Adox, the fluorescent EGFP-SFRS9 re-localizes to dot-like structures in the cell nucleus. In subsequent confocal analyses, we found that EGFP-SFRS9 localizes to nucleoli in Adox-treated cells. Our findings indicate the importance of arginine methylation for the subnuclear localization of SFRS9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A polyclonal antibody (C4), raised against the head domain of chicken myosin Va, reacted strongly towards a 65 kDa polypeptide (p65) on Western blots of extracts from squid optic lobes but did not recognize the heavy chain of squid myosin V. This peptide was not recognized by other myosin Va antibodies, nor by an antibody specific for squid myosin V. In an attempt to identify it, p65 was purified from optic lobes of Loligo plei by cationic exchange and reverse phase chromatography. Several peptide sequences were obtained by mass spectroscopy from p65 cut from sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels. BLAST analysis and partial matching with expressed sequence tags (ESTs) from a Loligo pealei data bank indicated that p65 contains consensus signatures for the heterogeneous nuclear ribonucleoprotein (hnRNP) A/B family of RNA-binding proteins. Centrifugation of post mitochondrial extracts from optic lobes on sucrose gradients after treatment with RNase gave biochemical evidence that p65 associates with cytoplasmic RNP complexes in an RNA-dependent manner. Immunohistochemistry and immunofluorescence studies using the C4 antibody showed partial co-labeling with an antibody against squid synaptotagmin in bands within the outer plexiform layer of the optic lobes and at the presynaptic zone of the stellate ganglion. Also, punctate labeling by the C4 antibody was observed within isolated optic lobe synaptosomes. The data indicate that p65 is a novel RNA-binding protein located to the presynaptic terminal within squid neurons and may have a role in synaptic localization of RNA and its translation or processing. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA(1,2). Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in E mu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc- overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap- dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site ( IRES)- dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic- specific expression of the endogenous IRES- dependent form of Cdk11 ( also known as Cdc21 and PITSLRE)(3-5), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in E mu-Myc/+ mice. When accurate translational control is re- established in E mu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post- genomic level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.