952 resultados para POROUS MATERIALS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herein, we have investigated the solubilization of decane into a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). Starting from this system, porous silica materials have been prepared. Performing the hydrothermal treatment at low temperature, a slight increase of the mesopore diameter is observed in the presence of decane. Increasing the temperature of the hydrothermal treatment, no swelling effect of decane is detected. By contrast, the pore diameter decreases but better mesopore homogeneity and a larger wall thickness are obtained. At high decane concentration the new myristoyl-end capped Jeffamine/decane/water system forms oil-in-water emulsions, which are used as template for the formation of hierarchical porous silica materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because of their practical applications, porous materials attract the attention of undergraduate students in a way that can be used to teach techniques and concepts in various chemistry disciplines. Porous materials are studied in various chemistry disciplines, including inorganic, organic, and physical chemistry. In this work, the syntheses of a microporous material and a mesoporous material are presented. The porosity of the synthesized materials is characterized by X-ray diffraction analysis. We show that this technique can be used to determine the pore dimensions of the synthesized materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanoporous materials with large surface area and well-ordered pore structure have been synthesized. Thiol groups were grafted on the materials' surface to make heavy metal ion pre-concentration media. The adsorption properties ofthe materials were explored. Mercury, gold and silver can be strongly adsorbed by these materials, even in the presence of alkaline earth metal ion. Though the materials can adsorb other heavy metal ions such as lead and copper, they show differential adsorption ability when several ions are present in solution. The adsorption sequence is: mercury> == silver> copper » lead and cadmium. In the second part of this work, the memory effects of mercury, gold, silver and boron were investigated. The addition of 2% L-cysteine and 1% thiourea eliminates the problems of the three metal ions completely. The wash-out time for mercury dropped from more than 20 minutes to 18 seconds, and the wash-out time for gold decreased from more than 30 minutes to 49 seconds. The memory effect of boron can be reduced by the use of mannitol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel porous silica matrix has been prepared from Pyrex glass, using hydrothermal treatment under saturated-steam condition. This process makes it possible to obtain, in one step, a silica support formed of a homogeneously distributed and interconnected macropore microstructure. The new matrix contains silanol groups that can be used in reactions of surface modification to provide a hybrid material and a selective macrofiltration membrane, and also it can improve chemical inertness. The porous matrix is noncrystalline as obtained and, after thermal treatment at temperatures higher than 950degreesC, exhibits an X-ray pattern characteristic of alpha-cristobalite and low volume contraction. The present samples were characterized by scanning electron microscopy, mercury intrusion porosimetry, nitrogen adsorption-desorption isotherms, infrared spectroscopy, X-ray powder diffractometry, atomic absorption, and high-resolution solid-state nuclear magnetic resonance. The results present a new way of producing a macroporous silica matrix.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2µm to 6µm have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (~200 degrees C) and thick/soft bonding layers (~6µm) have been achieved by In-Au bondi ng technology, which is able to compensate the potentially rough surface on the porous silicon sample without introducing significant thermal stress. The application of the porous silicon material in micro systems has been demonstrated in a micro gas chromatograph system by two indispensable components: an integrated vapor source and an inlet filter, wherein porous silicon performs the basic functions of porous media: wicking and filtration. By utilizing a macro porous silicon wick, the calibration vapor source was able to produce a uniform and repeatable vapor generation for n-decane with less than a 0.1% variation in 9 hours, and less than a 0.5% variation in rate over 7 days. With engineered porous silicon membranes the inlet filter was able to show a depth filtration with nearly 100% collection efficiency for particles larger than 0.3µm in diameter, a low pressure-drop of 523Pa at 20sccm flow rate, and a filter capacity of 500µg/cm2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The wetting front is the zone where water invades and advances into an initially dry porous material and it plays a crucial role in solute transport through the unsaturated zone. Water is an essential part of the physiological process of all plants. Through water, necessary minerals are moved from the roots to the parts of the plants that require them. Water moves chemicals from one part of the plant to another. It is also required for photosynthesis, for metabolism and for transpiration. The leaching of chemicals by wetting fronts is influenced by two major factors, namely: the irregularity of the fronts and heterogeneity in the distribution of chemicals, both of which have been described by using fractal techniques. Soil structure can significantly modify infiltration rates and flow pathways in soils. Relations between features of soil structure and features of infiltration could be elucidated from the velocities and the structure of wetting fronts. When rainwater falls onto soil, it doesn?t just pool on surfaces. Water ?or another fluid- acts differently on porous surfaces. If the surface is permeable (porous) it seeps down through layers of soil, filling that layer to capacity. Once that layer is filled, it moves down into the next layer. In sandy soil, water moves quickly, while it moves much slower through clay soil. The movement of water through soil layers is called the the wetting front. Our research concerns the motion of a liquid into an initially dry porous medium. Our work presents a theoretical framework for studying the physical interplay between a stationary wetting front of fractal dimension D with different porous materials. The aim was to model the mass geometry interplay by using the fractal dimension D of a stationary wetting front. The plane corresponding to the image is divided in several squares (the minimum correspond to the pixel size) of size length ". We acknowledge the help of Prof. M. García Velarde and the facilities offered by the Pluri-Disciplinary Institute of the Complutense University of Madrid. We also acknowledge the help of European Community under project Multi-scale complex fluid flows and interfacial phenomena (PITN-GA-2008-214919). Thanks are also due to ERCOFTAC (PELNoT, SIG 14)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper will introduce the reader to some of the “classical” and “new” families of ordered porous materials which have arisen throughout the past decades and/or years. From what is perhaps the best-known family of zeolites, which even now to this day is under constant research, to the exciting new family of hierarchical porous materials, the number of strategies, structures, porous textures, and potential applications grows with every passing day. We will attempt to put these new families into perspective from a synthetic and applied point of view in order to give the reader as broad a perspective as possible into these exciting materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well known that sound absorption and sound transmission properties of open porous materials are highly dependent on their airflow resistance values. Low values of airflow resistance indicate little resistance for air streaming through the porous material and high values are a sign that most of the pores inside the material are closed. The laboratory procedures for measuring airflow resistance have been stan- dardized by several organizations, including ISO and ASTM for both alternate flow and continuous flow. However, practical implementation of these standardized methods could be both complex and expensive. In this work, two indirect alternative measurement procedures were compared against the alternate flow standardized technique. The techniques were tested using three families of eco-friendly sound absorbent materials: recycled polyurethane foams, coconut natural fibres, and recycled polyester fibres. It is found that the values of airflow resistance measured using both alternative methods are very similar. There is also a good correlation between the values obtained through alternative and standardized methods.