108 resultados para POLYPLACOPHORA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods have been proposed to ‘clean’ the soft tissues of molluscs of mucus, so that the surface cilia can be examined microscopically. We report the first empirical test of the effectiveness of methods for removing mucus in the pallial cavity surface of chitons. Three methods were compared, at several time intervals: the enzyme hyaluronidase, the mucolytic agent N-acetyl cysteine (NAC), and seawater washing via the natural action of cilia in excised tissue. Treatment in NAC for 10 min produced the best results, and we recommend this protocol as a starting point for further investigation on mucus removal in a broader suite of taxa. We present the first description of the pallial surface cilia in the chiton Lepidochitona cinerea. During the course of this study, we also determined that these chitons were frequently infested with a ciliate protozoan parasite, Trichodina sp., which have been historically reported from chitons but never studied in detail. The parasites were absent where antimucus treatments were effective, but their abundance and large size (about 30-mm diameter) in less successful treatments obscured the view of the pallial cavity surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several animals and microbes have been shown to be sensitive to magnetic fields, though the exact mechanisms of this ability remain unclear in many animals. Chitons are marine molluscs which have high levels of biomineralised magnetite coating their radulae. This discovery led to persistent anecdotal suggestions that they too may be able to navigationally respond to magnetic fields. Several researchers have attempted to test this, but to date there have been no large-scale controlled empirical trials. In the current study, four chiton species (Katharina tunicata, Mopalia kennerleyi, Mopalia muscosa and Leptochiton rugatus, n=24 in each) were subjected to natural and artificially rotated magnetic fields while their movement through an arena was recorded over four hours. Field orientation did not influence the position of the chitons at the end of trials, possibly as a result of the primacy of other sensory cues (i.e. thigmotaxis). Under non-rotated magnetic field conditions, the orientation of subjects when they first reached the edge of an arena was clustered around 309-345 degrees (north-north-west) in all four species. However, orientations were random under the rotated magnetic field, which may indicate a disruptive effect of field rotation. This pattern suggests that chitons can detect and respond to magnetism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO(2)) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (similar to 10, 15, 20 degrees C) and two pCO(2) treatments (similar to 400 mu atm, pH 8.0; similar to 2000 mu atm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.

Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.

Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-destructive method for collecting samples for DNA analysis from the mucus of molluscs was successfully adapted for use with the genus Ischnochiton. DNA was extracted using a Chelex-based method and the COI subunit of the mtDNA was amplified and sequenced. Sequences from the mucus were crosschecked against sequences from the foot tissue of the same animal and were found to be identical. This method provides a non-destructive way of carrying out larger studies of the genetics of rare organisms and may be of general use for genetic-based field studies of molluscs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO2) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (10, 15, 20 °C) and two pCO2 treatments (400 µatm, pH 8.0; 2000 µatm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical ecology is the science of study and analysis of natural chemical products in result of biochemical processes in organisms and their reactions to variations of ecological and environmental parameters. In marine chemical ecology the existence of natural products in aquatic organisms and their ecological roles in marine animals and their reactions to environmental parameters variations will be studied. Among them, fatty acids are the most various and abundant ones in natural products which had been extracted from many marine organisms such as mollusks and algae. In this study selected animals were the dominant species of mollusks in intertidal zone of chabahar bay including gastropods, bivalves and polyplacophora classes. Nerita textilis and Turbo coronatus species are among gastropoda, Saccostrea cucullata is from bivalve, and Chiton lamyi is from polyplacophora. After seasonal sampling, separation and identification of natural products of these species, fatty acids had been isolated and identified by GC mass chromatography and their seasonal variations had been identified. In addition environmental factors of the location including pH, salinity temperature, dissolved oxygen, chlorophyll a and nutrients were measured monthly. Then the effect of seasonal variations of environmental factors on fatty acids had been studied by applying statistical analysis. GC/MS resulted thirteen fatty acids, which the most importants were myristic, stearic, oleic, palmitoleic, arachidonic and eicosapentaenoic acids. In majority of species palmitic acid was most abundant than the others and saturatedes had the most percentage levels than unsaturated ones. Although seasonal variations of identified fatty acids was not similar in species, but the majority of unsaturated ones had their maximum during winter, while saturated acids reached their maximum in summer. Statistical Analysis showed the strong correlations between Environmental factors and some fatty acids and temperature, nitrate, silicate and pH had strong correlations in all species. The species was studied from the point of lipid content and the results showed a good quality of lipid content in the selected species in the intertidal zone of Chabahar bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The position of the earliest-derived living molluscs, the Polyplacophora ( chitons) and shell-less vermiform Aplacophora, remains highly contentious despite many morphological, developmental and molecular studies of extant organisms. These two groups are thought to represent either a basal molluscan grade or a clade (Aculifera) sister to the 'higher' molluscs (Conchifera). These incompatible hypotheses result in very different predictions about the earliest molluscs. A new cladistic analysis incorporating both Palaeozoic and extant molluscs is presented here. Our results support the monophyly of Aculifera and suggest that extant aplacophorans and polyplacophorans both derive from a disparate group of multivalved molluscs in two major clades. Reanalysis of the critical Ordovician taxon 'Helminthochiton' thraivensis shows that this animal lacks a true foot despite bearing polyplacophoran-like valves. Its position within our phylogenetic reconstruction indicates that many fossil 'polyplacophorans' in the order Palaeoloricata are likely to represent footless stem-group aplacophorans. 'H.' thraivensis and similar forms such as Acaenoplax may be morphological stepping stones between chitons and the shell-less aplacophorans. Our results imply that crown-group molluscan synapomorphies include serial repetition, the presence of a foot, a mineralized scleritome and a creeping rather than worm-like mode of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The palaeoloricate ‘polyplacophorans’ are an extinct paraphyletic group of basal chiton-like organisms known primarily from their fossilized valves. Their phylo- genetic placement remains contentious, but they are likely to include both stem-group Polyplacophora and stem- group Aplacophora. Candidates for the latter position include ‘Helminthochiton’ thraivensis from the Ordovician of Scotland, which we redescribe here through a combined optical and micro-CT (XMT) restudy of the type material. The 11 specimens in the type series are all articulated, presenting partial or complete valve series as well as moul- dic preservation of the girdle armature; they demonstrate a vermiform body plan. The valves are typically palaeolori- cate in aspect, but differ in detail from all existing palaeol- oricate genera; we hence erect Phthipodochiton gen. nov. to contain the species. The most notable feature of the fossils is the spicular girdle; this is impersistently preserved, but demonstrably wraps entirely around the ventral surface of the animal, implying that a ‘true’ (i.e. polyplacophoran like) foot was absent, although we do not exclude the pos- sibility of a narrow solenogastre-like median pedal groove having been present. Phthipodochiton thraivensis presents an apparent mosaic of aplacophoran and polyplacophoran features and as such will inform our understanding of the relationship between these groups of extant molluscs. An inference may also be drawn that at least some other pal- aeoloricates possessed an ‘armoured aplacophoran’ body plan, in contrast to the ‘limpet-like’ body plan of extant Polyplacophora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mollusca is one of the most diverse, important and well-studied invertebrate phyla; however, relationships among major molluscan taxa have long been a subject of controversy(1-9). In particular, the position of the shell-less vermiform Aplacophora and its relationship to the better-known Polyplacophora (chitons) have been problematic: Aplacophora has been treated as a paraphyletic or monophyletic group at the base of the Mollusca(3,6,8), proximate to other derived clades such as Cephalopoda(2,3,10), or as sister group to the Polyplacophora, forming the clade Aculifera(1,5,7,11,12). Resolution of this debate is required to allow the evolutionary origins of Mollusca to be reconstructed with confidence. Recent fossil finds(13-16) support the Aculifera hypothesis, demonstrating that the Palaeozoic-era palaeoloricate 'chitons' included taxa combining certain polyplacophoran and aplacophoran characteristics(5). However, fossils combining an unambiguously aplacophoran-like body with chiton-like valves have remained elusive. Here we describe such a fossil, Kulindroplax perissokomos gen. et sp. nov., from the Herefordshire Lagerstatte(17,18) (about 425 million years BP), a Silurian deposit preserving a marine biota(18) in unusual three-dimensional detail. The specimen is reconstructed three-dimensionally through physical-optical tomography(19). Phylogenetic analysis indicates that this and many other palaeoloricate chitons are crown-group aplacophorans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.