540 resultados para POLYELECTROLYTE MULTILAYERS
Resumo:
Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism, and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.
Resumo:
Magnetic luminescent nanocomposites were prepared via a layer-by-layer (LbL) assembly approach. The Fe3O4 magnetic nanoparticles of 8.5 nm were used as a template for the deposition of the CdTe quantum dots (QDs)/polyelectrolyte (PE) multilayers. The number of polyelectrolyte multilayers separating the nanoparticle layers and the number of QDs/ polyelectrolyte deposition cycles were varied to obtain two kinds of magnetic luminescent nanocomposites, Fe3O4/PEn/CdTe and Fe3O4/(PE3/CdTe)(n), respectively. The assembly processes were monitored through microelectrophoresis and UV-vis spectra. The topography and the size of the nanocomposites were studied by transmission electron microscopy. The LbL technique for fabricating magnetic luminescent nanocomposites has some advantages to tune their properties. It was found that the selection of a certain number of the inserted polyelectrolyte interlayers and the CdTe QDs loading on the nanocomposites could optimize the photoluminescence properties of the nanocomposites. Furthermore, the nanocomposites could be easily separated and collected in an external magnetic field.
Resumo:
A layer-by-layer (LbL) adsorption and polymerization method was developed for the controllable preparation of polypyrrole (PPy) nanoparticles within ultrathin films. By repetitive adsorption of pyrrole and subsequent polymerization with 12-molybdophosphoric acid, the polyelectrolyte multilayer films containing PPy nanoparticles were fabricated. UV-visible absorption spectrocopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and cyclic voltammograras (CVs) were used to characterize the PPy nanoparticles and their multilayer thin films. UV-visible spectra indicate that the growth of PPy nanoparticles was regular and occurred within the polyelectrolyte films. The size of prepared PPy nanoparticles was found by TEM to increase with the increasing of polymerization cycles. The electrochemistry behavior of the multilayer thin films was studied in detail on ITO. The results suggest that the LbL adsorption and polymerization method developed herein provides an effective way to prepare PPy nanoparticles in the polymer matrix.
Resumo:
The report described a method of more stably dispersing oxidized carbon nanotubes (CNTs) by forming complex with polycation and the layer-by-layer self-assembly behavior of the complex with polyanion was studied. The properties of the self-assembled multilayer film containing carbon nanotubes were studied. Cyclic voltammetry, UV-vis-NIR spectroscopy, electrochemical impedance spectroscopy and scanning electron microscopy were used for characterization of film assembly. UV-vis-NIR spectroscopy and cyclic voltammetry study indicated the uniform growth of the film. Electrochemical impedance spectroscopy results showed that incorporating of carbon nanotubes in the polyelectrolyte multilayers; decreased in the electron-transfer resistance R, indicating more favorable electrochemical reaction interface. The electrocatalytic property of the multilayer modified electrode to NADH was investigated mainly with different numbers of the bilayers; and the results showed that along with the increase of the assembled bilayers the overpotential of NADH oxidation decreased. The detection lit-nit Could reach 6 mu M at a detection potential of 0.4 V.
Resumo:
The research work in this thesis included the sensitive and selective separation of biological substance by capillary electrophoresis with a boron doped diamond electrode for amperometric detection. Chapter 1 introduced the capillary electrophoresis and electrochemical detection. It included the different modes of capillary electrophoresis, polyelectrolyte multilayers coating for open tubular capillary electrochromatography, different modes of electrochemical detection and carbon based electrodes. Chapter 2 showed the synthesized and electropolymerized N-acetyltyramine with a negatively charged sulfobutylether-β-cyclodextrin on a boron doped diamond (BDD) electrode followed by the electropolymerzation of pyrrole to form a stable and permselective film for selective dopamine detection. For comparison, a glassy carbon (GC) electrode with a combined electropolymerized permselective film of polytyramine and polypyrrole-1-propionic acid was used for selective detection of dopamine. The detection limit of dopamine was improved from 100 nM at a GC electrode to 5 nM at a BDD electrode. Chapter 3 showed field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles embedded in poly(diallyldimethylammonium) chloride, which has been investigated for the electrophoretic separation of indoxyl sulphate, homovanillic acid and vanillylmandelic acid. The detection limit of the three analytes obtained by using a boron doped diamond electrode was around 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfereing chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration. Chapter 4 showed the selective detection of Pseudomonas Quinolone Signal, PQS for quorum sensing from its precursor HHQ, using a simply boron doped diamond electrode. Furthermore, by combining poly(diallyldimethylammonium) chloride modified fused silica capillary with a BDD electrode for amperometric detection, PQS was separated from HHQ and other analogues. The detection limit of PQS was as low as 65 nM. Different P. aeruginosa mutant strains were studied. Chapter 5 showed the separation of aminothiols by layer-by-layer coating of silica capillary with a boron doped diamond electrode. The capillary was layer-by-layer coated with the polycation poly(diallyldimethylammonium) chloride and negatively charged silica nanoparticles. All the aminothiols was separated and detected using a BDD electrode in an acidic electrolyte. It was a novel scheme for the separation and detection of glutathione reduced and oxidized forms, which is important for estimated overstressed level in the human system.
Resumo:
The adsorption kinetics curves of poly(xylylidene tetrahydrothiophenium chloride) (PTHT), a poly-p-phenylenevinylene (PPV) precursor, and the sodium salt of dodecylbenzene sulfonic acid (DBS), onto (PTHT/DBS)(n) layer-by-layer (LBL) films were characterized by means of UV-vis spectroscopy. The amount of PTHT/DBS and PTHT adsorbed on each layer was shown to be practically independent of adsorption time. A Langmuir-type metastable equilibrium model was used to adjust the adsorption isotherms data and to estimate adsorption/desorption coefficients ratios, k = k(ads)/k(des), values of 2 x 10(5) and 4 x 10(6) for PTHT and PTHT/DBS layers, respectively. The desorption coefficient has been estimated, using literature values for poly(o-methoxyaniline) desorption coefficient, as was found to be in the range of 10(-9) to 10(-6) s(-1), indicating that quasi equilibrium is rapidly attained.
Resumo:
The use of carbon nanotubes (CNTs) combined with other materials in nanostructured films has demonstrated their versatility in tailoring specific properties. In this study, we produced layer-by-layer (LbL) films of polyamidoamine-PAMAM-incorporating multiwalled carbon nanotubes (PAMAM-NT) alternated with nickel tetrasulfonated metallophthalocyanine (NiTsPc), in which the incorporation of CNTs enhanced the NiTsPc redox process and its electrocatalytic properties for detecting dopamine. Film growth was monitored by UV-vis spectroscopy, which pointed to an exponential growth of the multilayers, whose roughness increased with the number of bilayers according to atomic force microscopy (AFM) analysis. Strong interactions between -NH3+ terminal groups from PAMAM and -SO3- from NiTsPc were observed via infrared spectroscopy, while the micro-Raman spectra confirmed the adsorption of carbon nanotubes (CNTs) onto the LbL film containing NiTsPc. Cyclic voltammograms presented well-defined electroactivity with a redox pair at 0.86 and 0.87 V, reversibility, a charge-transfer controlled process, and high stability up to 100 cycles. The films were employed successfully in dopamine (DA) detection, with limits of detection and quantification of 10(-7) and 10(-6) mol L-1, respectively. Furthermore, films containing immobilized CNTs could distinguish between DA and its natural interferent, ascorbic acid (AA).
Resumo:
Layer-by-layer (LBL) films of nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) have been prepared, whose surface charge has been evaluated using surface potential measurements. From adsorption kinetics results, we obtained the immersion time of similar to 40 s, which was used to assemble layers of NiTsPc. The effect of gold (Au) and aluminum (Al) electrodes on the charge behavior was examined. We found that the surface potential (i.e. surface charge) was inverted each time a layer of PAH was alternated with another of NiTsPc molecules for the two types of electrodes, which was attributed to charge overcompensation between positive charges of PAH molecules, and negative charges from NiTsPc molecules. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.
Resumo:
The search for bioactive molecules to be employed as recognition elements in biosensors has stimulated researchers to pore over the rich Brazilian biodiversity. In this sense, we introduce the use of natural cashew gum (Anacardium occidentale L) as an active biomaterial to be used in the form of layer-by-layer films, in conjunction with phthalocyanines, which were tested as electrochemical sensors for dopamine detection. We investigated the effects of chemical composition of cashew gum from two different regions of Brazil (Piaui and Ceara states) on the physico-chemical characteristics of these nanostructures. The morphology of the nanostructures containing cashew gum was studied by atomic force microscopy which indicates that smooth films punctuated by globular features were formed that showed low roughness values. The results indicate that, independent of the origin, cashew gum stands out as an excellent film forming material with potential application in nanobiomedical devices as electrochemical sensors. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.
Resumo:
Polyelectrolyte multilayers (PEM) built by layer-by-layer technique have been extensively studied over the last years, resulting in a wide variety of current and potential applications. This technique can be used to construct thin films with different functionalities, or to functionalize surfaces with substantial different properties of those of the underlying substrates. The multilayering process is achieved by the alternate adsorption of oppositely charged polyelectrolytes. In this work we get advantage of the protein resistant property of the Poly (l-lysine)-graft-(polyethyleneglycol) to create protein patterns. Proteins can be immobilized on a surface by unspecific physical adsorption, covalent binding or through specific interactions. The first protein used in this work was laccase, a copper-containing redox enzyme that catalyse the oxidation of a broad range of polyphenols and aromatic substrates, coupled to the reduction of O2 to H2O without need of cofactors. Applications of laccases have been reported in food, pulp, paper, and textile industry, and also in biosensor development. Some uses require the immobilization of the enzyme on solid supports by adsorption, covalent attachment, entrapment, etc, on several substrates. Especially for biosensor development, highly active, stable and reproducible immobilization of laccase is required.
Resumo:
Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10 ppb. When the non-redox active PDDA is replaced by the redoxactive Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO(2) EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 mu M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Sum-Frequency Vibrational Spectroscopy (SFVS) has been used to investigate the effect of nitrogen-flow drying on the molecular ordering of Layer-by-Layer (LbL) films of poly(allylamine hydrochloride) (PAH) alternated with poly(styrene sulfonate) (PSS). We find that films dried by spontaneous water evaporation are more ordered and homogeneous than films dried by nitrogen flow. The latter are quite inhomogeneous and may have regions with highly disordered polymer conformation. We propose that drying by spontaneous water evaporation reduces the effect of drag by the drying front, while during nitrogen-flow drying the fast evaporation of water ""freezes"" the disordered conformation of adsorbed polyelectrolyte molecules. These findings are important for many applications of LbL films, since device performance usually depends on film morphology and its molecular structure.