944 resultados para POLY(LACTIC ACID-CO-LYSINE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with "stealth"-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) has many favourable attributes for tissue engineering scaffold applications. A major drawback, however, is its slow degradation rate, typically greater than 3 years. In this study PCL was melt blended with a small percentage of poly(aspartic acid-co-lactide) (PAL) and the degradation behaviour was evaluated in phosphate buffer solution (PBS) at 37 degrees C. The addition of PAL was found to significantly enhance the degradation profile of PCL. Subsequent degradation behaviour was investigated in terms of the polymer's mechanical properties, Molecular weight (M-w), mass changes and thermal characteristics. The results indicate that the addition of PAL accelerates the degradation of PCL, with 20% mass loss recorded after just 7 months in vitro for samples containing 8 wt% PAL. The corresponding pure PCL samples exhibited no mass loss over the same time period. In vitro assessment of PCL and PCL/PAL composites in tissue Culture medium in the absence of cells revealed stable pH readings with time. SEM studies of cell/biomaterial interactions demonstrated biocompatibility of C3H10T1/2 cells with PCL and PCL/PAL composites at all concentrations of PAL additive. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the search for a environmentally friendly products has increased. One of the major challenges has been the demand for biodegradable materials that can replace plastic. If a few decades ago, plastic replaced, for example, the ivory in billiard balls, and in other products, saving the lives of thousands elephants, nowadays a replacement for that plastic is being searched, to prevent the change of the environmental conditions, essential to life in harmonly with the fauna and flora that the human specie has, in recent years, destroyed. Plastic is a petroleum derivate, whose price has been growing exponentially, mainly due to the fact of beind a cheap material and also to enable the production of products that are essential to modern life. Therefore, the petrochemical era is going to come to an end and a new environmentally sustainable era, based on biodegradable materials from renewable sources, will follow. The change to green routes only will be possible with the support of the major companies, and the implementation of drastic governmental law. Poly(lactic acid), PLA, is produced from the lactose present in the corn or sugarcane and has been intensively studied in recent years because if some limitants properties required its extrusion are overcome, it has the potential to replace the traditional polymers. PLA have high brittleness, low toughness and low tensile elongation. In this work, natural antioxidant (alpha-tocopherol) and synthetics antioxidants (BHT ant TBHQ) were added to the PLA with the aim not only to improve their flexibility, but also to create an active packaging to extend the shelf life of the foods and improve the organoleptic properties by preventing food losses. The impact of the addition of antioxidants into the PLA films, in its mechanical, thermal and barrier properties were studied by FTIR, DSC, SEM, AFM, DMA, TGA, QCM and time-lag techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLLA is a thermoplastic biopolymer and can be used in industrial applications for medical and filtration applications. The brittleness of PLLA is attributed to slow crystallization rates and its glass transition temperature (Tg) is high (60 °C); for this reason, its applications are limited. The orientation, morphology, and crystal structure of the electrospun fibers was investigated by SEM, POM, DSC, FTIR, XRD, and SAXS. Combining with additives leads to a large decrease of fiber diameter, viscosity, and changes of fiber morphology and crystal structure compared to pure PLLA. DSC showed that the Tg of PLLA decreased about 15 °C and there was no change in relaxation enthalpy by the addition of plasticizer. FT-IR indicate a strong interaction between PLLA and additives; a new band appears in the PLLA blend at 1,756 cm−1 at room temperature as a crystalline band without any annealing. In addition, WAXD indicated that the intensities of the two peaks at (200/110) and (203) increased for the blend at room temperature without any annealing in comparison with PLLA; this means that PHB crystallizes in the amorphous region of PLLA. The POM experiments agree with the results from DSC, FTIR, and WAXS measurements, confirming that adding PHB results in an increase in the number of nuclei with much smaller spherulites and enhances the crystallization behavior of this material, thereby improving its potential for applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund`s adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 mu g, 5 mu g, 10 mu g, 20 mu g or 40 mu g center dot 50 mu L-1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) was more effective than `free` P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 mu g center dot 50 mu L-1) were most effective. Treatment with P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1) or P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable nanoparticles are at the forefront of drug delivery research as they provide numerous advantages over traditional drug delivery methods. An important factor affecting the ability of nanoparticles to circulate within the blood stream and interact with cells is their morphology. In this study a novel processing method, confined impinging jet mixing, was used to form poly (lactic acid) nanoparticles through a solvent-diffusion process with Pluronic F-127 being used as a stabilizing agent. This study focused on the effects of Reynolds number (flow rate), surfactant presence in mixing, and polymer concentration on the morphology of poly (lactic acid) nanoparticles. In addition to looking at the parameters affecting poly (lactic acid) morphology, this study attempted to improve nanoparticle isolation and purification methods to increase nanoparticle yield and ensure specific morphologies were not being excluded during isolation and purification. The isolation and purification methods used in this study were centrifugation and a stir cell. This study successfully produced particles having pyramidal and cubic morphologies. Despite successful production of these morphologies the yield of non-spherical particles was very low, additionally great variability existed between redundant trails. Surfactant was determined to be very important for the stabilization of nanoparticles in solution but appears to be unnecessary for the formation of nanoparticles. Isolation and purification methods that produce a high yield of surfactant free particles have still not been perfected and additional testing will be necessary for improvement.¿

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymers have experienced increased attention in recent years because of their wide range of applications in biomedical, packaging and agriculture fields. PLA, poly(lactic acid), is a linear aliphatic biodegradable thermoplastic polyester, with good mechanical properties, thermal stability, processability and low environmental impact, widely used as an alternative to conventional polymers. PLA products can be recycled after use either by remelting and reprocessing the material, or by hydrolysis to basic lactic acid [1]. The object of this communication is the study of the possible variation in physical properties induced by sub sequent reprocessing cycles of PLA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal degradation of PLA is a complex process since it comprises many simultaneous reactions. The use of analytical techniques, such as differential scanning calorimetry (DSC) and thermogravimetry (TGA), yields useful information but a more sensitive analytical technique would be necessary to identify and quantify the PLA degradation products. In this work the thermal degradation of PLA at high temperatures was studied by using a pyrolyzer coupled to a gas chromatograph with mass spectrometry detection (Py-GC/MS). Pyrolysis conditions (temperature and time) were optimized in order to obtain an adequate chromatographic separation of the compounds formed during heating. The best resolution of chromatographic peaks was obtained by pyrolyzing the material from room temperature to 600 °C during 0.5 s. These conditions allowed identifying and quantifying the major compounds produced during the PLA thermal degradation in inert atmosphere. The strategy followed to select these operation parameters was by using sequential pyrolysis based on the adaptation of mathematical models. By application of this strategy it was demonstrated that PLA is degraded at high temperatures by following a non-linear behaviour. The application of logistic and Boltzmann models leads to good fittings to the experimental results, despite the Boltzmann model provided the best approach to calculate the time at which 50% of PLA was degraded. In conclusion, the Boltzmann method can be applied as a tool for simulating the PLA thermal degradation.