994 resultados para POLY(ARYL ETHER KETONE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel poly(aryl ether ketone)s with liquid crystallinity were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with 4,4'-difluorobenzophenone and their thermotropic liquid crystalline properties were characterized by DSC, PLM and WAXD, The copolymers containing 70% biphenol formed nematic phase while the copolymer containing 50% biphenol exhibited smectic texture, The banded textures were formed after shearing the sample in the nematic liquid crystalline state. The identification of the structures in each mesogenic phase has been carried out by combining WAXD with PLM and DSC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel poly(aryl ether ketone)s were synthesized by nucleophilic substitution reactions of difluoromonomer with 4,4'-biphenol and substituted hydroquinone. The results showed that the novel polymers exhibited multiple phase transitions and formed optical birefringence textures above their melting transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel main chain poly(aryl ether ketone)s containing a lateral phenyl group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and phenylhydroquinone with either 4,4'-difluorobenzophenone or 1,4-bis(4-fluorobenzoyl)benzene and their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques. Thermotropic liquid crystalline behaviour was observed in the copolymers containing 50 and 70mol% biphenol. Melting (T-m) and isotropization (T-i) transitions both appeared on the DSC thermograms. A banded texture was formed after shearing the sample in the liquid crystalline nematic state. As expected, each of the copolymers had a relatively lower melting transition than the biphenol-based homopoly(aryl ether ketone)s because of the copolymerization effect of the crystal-disrupting monomer phenylhydroquinone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonisothermal melt crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl was investigated by differential scanning calorimetry (DSC). A convenient and reasonable kinetic approach was used to describe the nonisothermal melt crystallization behavior, and its applicability was verified when the modified Avrami analysis by the Jeziorny and Ozawa equation were applied to the crystallization process. The crystallization activation energy was estimated to be -219 kJ/mol by Kissinger method while crystallizing from the PEDEKmK melt nonisothermally. These observed crystallization characteristics were compared to those of the other members of poly(aryl ether ketone) family. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherulites and lamellar single crystals of poly(aryl ether ketone ketone) containing isophthaloyl moieties (PEKK(I)) were obtained from dilute alpha-chloronaphthalene solution. The morphology and structure of the spherulites and single crystals were studied by electron microscopy and electron diffraction. The spherulites were found to consist of elongated lamellar branches that grow with the b crystallographic axis in the radial direction. Single crystals possess a similar habit, with b parallel to the long axis, a transverse, and c perpendicular to the lamellae plane. High-resolution images of the PEKK(I) crystals which show the perfection of and defects in the crystals, were obtained, and many defects or dislocations a,ere observed. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel poly(aryl ether ketone)s were synthesized by nucleophilic substitution reactions of 4,4'-difluorobenzophenone with 4,4'-biphenyldiol and chlorohydroquinone. As expected, the copolymers have lower melting transitions than the biphenyldiol-based homopoly(aryl ether ketone) because of the copolymerization effect of the crystal-disrupting monomer chlorohydroquinone. Copolymers containing 50 and 70% biphenyldiol show two first-order transitions which are associated with the crystal-to-liquid crystal transition and the liquid crystal-to-isotropic transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel poly(aryl ether ketone)s containing chloro-side group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and chlorohydroquinone with either 4,4'-difluorobenzophenone(BP/CH/DF) or 1,4-bis(p-fluorobenzoyl)benzene (BP/CH/BF) and their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques. The thermotropic liquid crystalline behavior was observed in the copolymers containing 50 and 70% biphenol. Melting transition (Tm) and isotropization transition (Ti) both appeared in the DSC thermograms. A banded texture was formed after shearing the sample in the liquid crystalline state. The novel poly(aryl ether ketone)s had relatively higher glass transition temperature (Tg) in the range of 168 similar to 200 degrees C and lower melting temperature (Tm) in the range of 290 similar to 340 degrees C. The thermal stability (Td) was in the range of 430 similar to 490 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal melt and cold crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl were investigated by differential scanning calorimetry in two temperature regions. Avrami analysis is used to describe the primary stages of the melt and cold crystallization, with exponent n = 2 and n = 4, respectively. The activation energies are -118 kJ/mol and 510 kJ/mol for crystallization from the melt and the glassy states, respectively. The equilibrium melting point T-m(0) is estimated to be 309 degrees C by using the Hoffman-Weeks approach, which compares favorably with determination from the Thomson-Gibbs method. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 8.45 erg/cm(2) and sigma(e) = 45.17 erg/cm(2), respectively. The work of chain folding q is determined as 3.06 kcal/mol. These observed crystallization characteristics of PEDEKmK are compared with those of the other members of poly(aryl ether ketone) family. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane gases in a series of poly(aryl ether ketone)s was examined. These polymer membranes have a wide range of permeability coefficients and permselectivity coefficients, showing excellent gas-transport properties. The enhanced interchain interaction in the polymers due to intermolecular hydrogen bonds and ionic bonds results in a considerable increase in permselectivity but a decrease in permeability. On the contrary, the polymers with bulky arkyl substituents show significantly increased permeability. The causes of this trend are interpreted in terms of the free volume, interchain distance, and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest is the observation that the ionomer IMPEK-K+, which simultaneously contains bulky isopropyl substituents and pendant carboxylate groups, exhibits over twice higher CO2 permeability and 15% higher CO2/CH4 permselectivity than those of bisphenol-A p'olysulfone (PSF). The possibility of using the new synthesized poly(aryl ether ketone)s in gas separation membrane application is also discussed. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure, morphology and polymorphism induced by uniaxial drawing of poly(ether ether ketone ketone) [PEEKK] have been studied by transmission electron microscopy (TEM), electron diffraction (ED) and wide angle X-ray diffraction (WAXD). On the basis of WAXD and ED patterns,the crystal structure of unoriented PEEKK is determined to have two-chain orthorhombic packing with unit cell parameters of a 0.772 nm, b = 0.600 nm, c = 1.004 nm (form I), A stress-induced crystal modification (form II) is identified and found to possess a two-chain orthorhombic lattice with unit cell dimensions of a = 0.461 nm, b = 1.074 nm, c = 1.080 nm. The 7.5% increase in c-axis dimension for form II is attributed to an overextended chain conformation, arising from extensional deformation during uniaxial drawing and fixed ''in-situ'' through strain-induced crystallization. The average ether-ketone bridge bond angles in form II crystal are determined to be 148.9 degrees by using standard bond lengths. The crystal morphology of PEEKK bears a great similarity to that of PEEK. The crystals grow in the form of spherulites and have the b-axis of unit cell radial. The effects of draw rate on strain-induced crystallization and induction of form II structure are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal structure and polymorphism induced by uniaxial drawing of a poly(aryl ether ketone) [PEDEKmK] prepared from 1,3-bis(4-fluorobenzoyl)benzene and biphenyl-4,4'-diol have been investigated by means of transmission electron microscopy (TEM), electron diffraction (ED), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) techniques. The melting and recrystallization process in the temperature range of 250-260 degrees C, far below the next melting temperature (306 degrees C), was identified and found to be responsible for the remarkable changes in lamellar morphology. Based on WAXD and ED patterns, it was found that crystal structure of isotropic-crystalline PEDEKmK obtained under different crystallization conditions (melt-crystallization, cold-crystallization, solvent-induced crystallization, melting-recrystallization, and crystallization from solution) keeps the same mode of packing, i.e., a two-chain orthorhombic unit cell with the dimensions a = 0.784 nm, b = 0.600 nm, and c = 4.745 nm (form I). A second crystal modification (form II) can be induced by uniaxial drawing above the glass transition temperature, and always coexists with form I. This form also possesses an orthorhombic unit cell but with different dimensions, i.e., a = 0.470 nm, b = 1.054 nm, c = 5.064 nm. The 0.32 nm longer c-axis of form II as compared with form I is attributed to an overextended chain conformation due to the expansion of ether and ketone bridge bond angles during uniaxial drawing. The temperature dependence of WAXD patterns for the drawn PEDEKmK suggests that form II can be transformed into the more stable form I by relaxation of overextended chains and relief of internal stress at elevated temperature in absence of external tension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(aryl ether ketone ketone)s (PEKK) was a high-performance engineering plastics, By means of Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC) methods, PEKK samples crystallized in solvent induction, from glass state and from melting state were studied, Crystal forms I and II for PEKK were found, The formation of crystal form II was dependent on thermal history and solvent induction, and this form II had melting point 10 degrees C or so lower than that of form I crystallized from glass state, All PEKK samples had low melting peaks which were relevant to the polarization of PEKK molecular chain, while they had nothing to do with thermal history, The heat of fusion for PEKK low melting peaks accounted for,percentage of 2 to 10 or so of the whole heat of fusion, And PEKK has its equilibrium melting point of 409 degrees C.