907 resultados para PLUS WATER-SYSTEMS
Resumo:
Solar heating of potable water has traditionally been accomplished through the use of solar thermal (ST) collectors. With the recent increases in availability and lower cost of photovoltaic (PV) panels, the potential of coupling PV solar arrays to electrically heated domestic hot water (DHW) tanks has been considered. Additionally, innovations in the SDHW industry have led to the creation of photovoltaic/thermal (PV/T) collectors, which heat water using both electrical and thermal energy. The current work compared the performance and cost-effectiveness of a traditional solar thermal (ST) DHW system to PV-solar-electric DHW systems and a PV/T DHW system. To accomplish this, a detailed TRNSYS model of the solar hot water systems was created and annual simulations were performed for 250 L/day and 325 L/day loads in Toronto, Vancouver, Montreal, Halifax, and Calgary. It was shown that when considering thermal performance, PV-DHW systems were not competitive when compared to ST-DHW and PVT-DHW systems. As an example, for Toronto the simulated annual solar fractions of PV-DHW systems were approximately 30%, while the ST-DHW and PVT-DHW systems achieved 65% and 71% respectively. With current manufacturing and system costs, the PV-DHW system was the most cost-effective system for domestic purposes. The capital cost of the PV-DHW systems were approximately $1,923-$2,178 depending on the system configuration, and the ST-DHW and PVT system were estimated to have a capital cost of $2,288 and $2,373 respectively. Although the capital cost of the PVT-DHW system was higher than the other systems, a Present Worth analysis for a 20-year period showed that for a 250 L/day load in Toronto the Present Worth of the PV/T system was approximately $4,597, with PV-DHW systems costing approximately $7,683-$7,816 and the ST-DHW system costing $5,238.
Resumo:
"August 1978."
Resumo:
Mode of access: Internet.
Resumo:
"DOE/CS-0042/2"
Resumo:
Mode of access: Internet.
Resumo:
"MTAC TR06-02"--Cover.
Resumo:
"IEPA/PWS/83-011."
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included.
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included. © 2010 The authors.
Resumo:
U.S. Environmental Protection Agency
Resumo:
Kariba weed (Salvinia molesta) is an invasive alien waterweed that was first recorded in Uganda in sheltered bays of Lake Kyoga in June 2013. This waterweed has become a common feature on Lake Kyoga and its associated rivers, streams and swamps, and has spread to other lakes notably Kwania and Albert in addition to Lake Kimira in Bugiri district.
Resumo:
Gravity-flow aqueducts are used to bring clean water from mountain springs in the Comarca Ngäbe-Buglé, Panama, to the homes of the indigenous people who reside there. Spring captures enclose a spring to direct the flow of water into the transmission line. Seepage contact springs are most common, with water appearing above either hard basalt bedrock or a dense clay layer. Spring flows vary dramatically during wet and dry seasons, and discharge points of springs can shift, sometimes enough to impact the capture structure and its ability to properly collect all of the available water. Traditionally, spring captures are concrete boxes. The spring boxes observed by the author were dilapidated or out of alignment with the spring itself, only capturing part of the discharge. An improved design approach was developed that mimics the terrain surrounding the spring source to address these issues. Over the course of a year, three different spring sites were evaluated, and spring captures were designed and constructed based on the new approach. Spring flow data from each case study demonstrate increased flow capture in the improved structures. Rural water systems, including spring captures, can be sustainably maintained by the Circuit Rider model, a technical support system in which technical assistance is provided for the operation of the water systems. During 2012-2013, the author worked as a Circuit Rider and facilitated a water system improvement project while exploring methods of community empowerment to increase the capacity for system maintenance. Based on these experiences, recommendations are provided to expand the Circuit Rider model in the Comarca Ngäbe-Buglé under the Panamanian Ministry of Health’s Water and Sanitation Project (PASAP)
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
Gas hydrate formation experiments were performed using methane in the presence of tetrahydrofuran (THF) in aqueous solution in a transparent bubble column in which a single pipe or a sintered plate was used to produce bubbles. The mole fraction of THF in aqueous solution was fixed at 6%. The hydrate formation kinetic behaviors on the surface of the rising bubble, the mechanical stability of hydrate shell formed on the surface of the bubble, the interactions among the bubbles with hydrate shell were observed and investigated morphologically. The rise velocities of individual bubbles with hydrate shells of different thickness and the consumption rates of methane gas were measured. A kinetic model was developed to correlate the experimentally measured gas consumption rate data. It was found that the hydrate formation rate on the surface of the moving bubble was high, but the formed hydrate shell was not very easy to be broken up. The bubbles with hydrate shells tended to agglomerate rather than merge into bigger bubble. This kind of characteristic of hydrate shell hindered the further formation of hydrate and led to the lower consumption rate of methane. The consumption rate of methane was found to increase with the decrease of temperature or increase of pressure. The increase of gas flux led to a linear increase in consumption rate of methane. It was demonstrated that the developed kinetic model could be used to correlate the consumption rate satisfyingly.