102 resultados para PLASMONIC NANOANTENNAS
Resumo:
Die vorliegenden Dissertation beschäftigt sich mit plasmonischen Nanopartikeln, deren Wechselwirkung mit Licht in einer Plasmonenschwingung resultiert. Suspensionen dieser Partikel zeigen kräftige Farben, da sich die Resonanzfrequenz der Plasmonenschwingung im sichtbaren Bereich des elektromagnetischen Spektrum befindet. Durch die Veränderung interner (Material, Größe, Form) oder externer Parameter (Brechungsindex der Umgebung, Abstand zu anderen plasmonischen Partikeln) lässt sich die Farbe der Partikel verändern, eine Verschiebung der Resonanzfrequenz kann beobachtet werden. Ihre Sensitivität gegenüber äußeren Bedingungen ist der Grund, weshalb plasmonische Nanopartikel als Sensoren eingesetzt werden können. Wichtig ist hierbei nicht nur, dass die Partikel eine hohe Sensitivität zeigen, sondern auch die Möglichkeit, reproduzierbar Partikel zu synthetisieren, die experimentellen Anforderungen entsprechen. In der vorliegenden Arbeit wird das Wachstum von reinen Gold- und mit Silber beschichteten Goldnanostäbchen untersucht. Des Weiteren werden plasmonische Nanopartikel als Orientierungs-, Brechungsindex- und Abstandssensoren verwendet. Die Synthese von Goldnanostäbchen erfolgt auf nasschemischen Weg, ihr anisotropes Wachstum aus isotropen Keimen wird durch zahlreiche Faktoren beeinflusst. In diesem Zusammenhang wurde ein Wachstumsmodell entwickelt, das neben dem Vorhandensein eines Stabilisators auch die Rolle von Bromid- und Silberionen herausstellt, die durch selektive Adsorption das Wachstum bestimmter Kristallflächen inhibieren. Zudem konnte gezeigt werden, dass die Potentialdifferenz zwischen Reduktions- und Oxidationsmittel klein sein muss, um ein langsames selektives Wachstum zu gewährleisten. rnDurch das Aufwachsen einer dünnen Silberschicht auf Goldnanostäbchen verbessert sich deren Qualität im Bezug auf die heterogene Linienbreite. Der “Plasmonic Focusing Effect”, die Änderung der Steigung des linearen Zusammenhangs von Plasmonenresonanz und Aspektverhältnis, konnte theoretisch berechnet und experimentell verifiziert werden. Durch die Aufnahme zeitaufgelöster Spektren und die Untersuchung des Verlaufs der Reaktion wurden sowohl Reaktionsordnung, als auch Aktivierungsenergie ermittelt. Das so gefundene kinetische Model erlaubt zudem die Vorhersage des Reaktionsprodukts zu verschiedenen Zeiten. rnEinzelne Goldnanostäbchen wurden in einer Gelmatrix bei verschiedenen Temperaturen untersucht, die Aufnahme der zeitlichen Variation der polarisationsabhängigen Streuintensität konnte genutzt werden, um den Kollaps des Gels zu charakterisieren. Neben der Verwendung einzelner plasmonischer Nanopartikel wurden auch Dimere, bestehend aus zwei Goldnanokugeln, untersucht. Nach der Kalibrierung der Resonanzfrequenz gegenüber des Abstandes der beiden Partikel durch externe Methoden (Lichtstreuung, Cryo- Elektronenmikroskopie) wurde der so gefundene exponentielle Zusammenhang verwendet, um sowohl den Brechungsindex der Umgebung, als auch den Abstand der beiden Goldnanokugeln zu bestimmen. Des Weiteren wurden Goldnanopartikeldimere benutzt, um ein als Linker verwendetes thermoresponsives Elastin-Polymer bei verschiedenen Temperaturen zu charakterisieren. Neben Aggregaten aus zwei Goldnanokugeln wurden auch so genannte “core-satellite” Strukturen synthetisiert, die um einen großen Goldnanopartikelkern viele kleine Goldnanopartikel tragen. Diese Partikel haben eine theoretisch vorhergesagte höhere Sensitivität gegenüber Brechungsindexänderungen, was in ersten Experimenten gezeigt werden konnte.
Resumo:
In dieser Arbeit wird eine detaillierte Untersuchung und Charakterisierung der Zwei-Photonen-induzierten Fluoreszenzverstärkung von organischen Farbstoffen auf plasmonischen Nanostrukturen vorgestellt. Diese Fluoreszenzverstärkung ist insbesondere für hochaufgelöste Fluoreszenzmikroskopie und Einzelmolekülspektroskopie von großer Bedeutung. Durch die Zwei-Photonen-Anregung resultiert eine Begrenzung des Absorptionsprozesses auf das fokale Volumen. In Kombination mit dem elektrischen Nahfeld der Nanostrukturen als Anregungsquelle entsteht eine noch stärkere Verringerung des Anregungsvolumens auf eine Größe unterhalb der Beugungsgrenze. Dies erlaubt die selektive Messung ausgewählter Farbstoffe. Durch die Herstellung der Nanopartikel mittels Kolloidlithografie wird eine definierte, reproduzierbare Geometrie erhalten. Polymermultischichten dienen als Abstandshalter, um die Farbstoffe an einer exakten Distanz zum Metall zu positionieren. Durch die kovalente Anbindung des Farbstoffs an die oberste Schicht wird eine gleichmäßige Verteilung des Farbstoffs in geringer Konzentration erhalten. rnEs wird eine Verstärkung der Fluoreszenz um den Faktor 30 für Farbstoffe auf Goldellipsen detektiert, verglichen mit Farbstoffen außerhalb des Nahfelds. Sichelförmige Nanostrukturen erzeugen eine Verstärkung von 120. Dies belegt, dass das Ausmaß der Fluoreszenzverstärkung entscheidend von der Stärke des elektrischen Nahfelds der Nanostruktur abhängt. Auch das Material der Nanostruktur ist hierbei von Bedeutung. So erzeugen Silberellipsen eine 1,5-fach höhere Fluoreszenzverstärkung als identische Goldellipsen. Distanzabhängige Fluoreszenzmessungen zeigen, dass die Zwei-Photonen-angeregte Fluoreszenzverstärkung an strukturspezifischen Abständen zum Metall maximiert wird. Elliptische Strukturen zeigen ein Maximum bei einem Abstand von 8 nm zum Metall, wohingegen bei sichelförmigen Nanostrukturen die höchste Fluoreszenzintensität bei 12 nm gemessen wird. Bei kleineren Abständen unterliegt der Farbstoff einem starken Löschprozess, sogenanntes Quenching. Dieses konkurriert mit dem Verstärkungsprozess, wodurch es zu einer geringen Nettoverstärkung kommt. Hat die untersuchte Struktur Dimensionen größer als das Auflösungsvermögen des Mikroskops, ist eine direkte Visualisierung des elektrischen Nahfelds der Nanostruktur möglich. rnrnEin weiterer Fokus dieser Arbeit lag auf der Herstellung neuartiger Nanostrukturen durch kolloidlithografische Methoden. Gestapelte Dimere sichelförmiger Nanostrukturen mit exakter vertikaler Ausrichtung und einem Separationsabstand von etwa 10 nm wurden hergestellt. Die räumliche Nähe der beiden Strukturen führt zu einem Kopplungsprozess, der neue optische Resonanzen hervorruft. Diese können als Superpositionen der Plasmonenmoden der einzelnen Sicheln beschrieben werden. Ein Hybridisierungsmodell wird angewandt, um die spektralen Unterschiede zu erklären. Computersimulationen belegen die zugrunde liegende Theorie und erweitern das Modell um experimentell nicht aufgelöste Resonanzen. rnWeiterhin wird ein neuer Herstellungsprozess für sichelförmige Nanostrukturen vorgestellt, der eine präzise Formanpassung ermöglicht. Hierdurch kann die Lage der Plasmonenresonanz exakt justiert werden. Korrelationen der geometrischen Daten mit den Resonanzwellenlängen tragen zum grundlegenden Verständnis der Plasmonenresonanzen bei. Die vorgestellten Resultate wurden mittels Computersimulationen verifiziert. Der Fabrikationsprozess erlaubt die Herstellung von Dimeren sichelförmiger Nanostrukturen in einer Ebene. Durch die räumliche Nähe überlappen die elektrischen Nahfelder, wodurch es zu kopplungs-induzierten Shifts der Plasmonenresonanzen kommt. Der Unterschied zu theoretisch berechneten ungekoppelten Nanosicheln kann auch bei den gegenüberliegenden sichelförmigen Nanostrukturen mit Hilfe des Plasmonenhybridisierungsmodells erklärt werden.
Resumo:
Plasmonic nanoparticles are great candidates for sensing applications with optical read-out. Plasmon sensing is based on the interaction of the nanoparticle with electromagnetic waves where the particle scatters light at its resonance wavelength. This wavelength depends on several intrinsic factors like material, shape and size of the nanoparticle as well as extrinsic factors like the refractive index of the surrounding medium. The latter allows the nanoparticle to be used as a sensor; changes in the proximate environment can be directly monitored by the wavelength of the emitted light. Due to their minuscule size and high sensitivity this allows individual nanoparticles to report on changes in particle coverage.rnrnTo use this single particle plasmon sensor for future sensing applications it has to meet the demand for detection of incidents on the single molecule level, such as single molecule sensing or even the detection of conformational changes of a single molecule. Therefore, time resolution and sensitivity have to be enhanced as today’s measurement methods for signal read-out are too slow and not sensitive enough to resolve these processes. This thesis presents a new experimental setup, the 'Plasmon Fluctuation Setup', that leads to tremendous improvements in time resolution and sensitivity. This is achieved by implementation of a stronger light source and a more sensitive detector. The new setup has a time resolution in the microsecond regime, an advancement of 4-6 orders of magnitude to previous setups. Its resonance wavelength stability of 0.03 nm, measured with an exposure time of 10 ms, is an improvement of a factor of 20 even though the exposure time is 3000 times shorter than in previous reports. Thus, previously unresolvable wavelength changes of the plasmon sensor induced by minor local environmental alteration can be monitored with extremely high temporal resolution.rnrnUsing the 'Plasmon Fluctuation Setup', I can resolve adsorption events of single unlabeled proteins on an individual nanorod. Additionally, I monitored the dynamic evolution of a single protein binding event on a millisecond time scale. This feasibility is of high interest as the role of certain domains in the protein can be probed by a study of modified analytes without the need for labels possibly introducing conformational or characteristic changes to the target. The technique also resolves equilibrium fluctuations in the coverage, opening a window into observing Brownian dynamics of unlabeled macromolecules. rnrnA further topic addressed in this thesis is the usability of the nanoruler, two nanospheres connected with a spacer molecule, as a stiffness sensor for the interparticle linker under strong illumination. Here, I discover a light induced collapse of the nanoruler. Furthermore, I exploit the sensing volume of a fixed nanorod to study unlabeled analytes diffusing around the nanorod at concentrations that are too high for fluorescence correlation spectroscopy but realistic for biological systems. Additionally, local pH sensing with nanoparticles is achieved.
Resumo:
Diese Arbeit befasst sich mit den optischen Resonanzen metallischer Nanopartikel im Abstand weniger Nanometer von einer metallischen Grenzfläche. Die elektromagnetische Wechselwirkung dieser „Kugel-vor-Fläche“ Geometrie ruft interessante optische Phänomene hervor. Sie erzeugt eine spezielle elektromagnetische Eigenmode, auch Spaltmode genannt, die im Wesentlichen auf den Nanospalt zwi-schen Kugel und Oberfläche lokalisiert ist. In der quasistatischen Näherung hängt die Resonanzposition nur vom Material, der Umgebung, dem Film-Kugel Abstand und dem Kugelradius selbst ab. Theoretische Berechnungen sagen für diese Region unter Resonanzbedingungen eine große Verstärkung des elektro-magnetischen Feldes voraus. rnUm die optischen Eigenschaften dieser Systeme zu untersuchen, wurde ein effizienter plasmonenver-mittelnder Dunkelfeldmodus für die konfokale Rastermikroskopie durch dünne Metallfilme entwickelt, der die Verstärkung durch Oberflächenplasmonen sowohl im Anregungs- als auch Emissionsprozess ausnutzt. Dadurch sind hochwertige Dunkelfeldaufnahmen durch die Metallfilme der Kugel-vor-Fläche Systeme garantiert, und die Spektroskopie einzelner Resonatoren wird erleichtert. Die optischen Untersuchungen werden durch eine Kombination von Rasterkraft- und Rasterelektronenmikroskopie vervollständigt, so dass die Form und Größe der untersuchten Resonatoren in allen drei Dimensionen bestimmt und mit den optischen Resonanzen korreliert werden können. Die Leistungsfähigkeit des neu entwickelten Modus wird für ein Referenzsystem aus Polystyrol-Kugeln auf einem Goldfilm demonstriert. Hierbei zeigen Partikel gleicher Größe auch die erwartete identische Resonanz.rnFür ein aus Gold bestehendes Kugel-vor-Fläche System, bei dem der Spalt durch eine selbstorganisierte Monolage von 2-Aminoethanthiol erzeugt wird, werden die Resonanzen von Goldpartikeln, die durch Reduktion mit Chlorgoldsäure erzeugt wurden, mit denen von idealen Goldkugeln verglichen. Diese ent-stehen aus den herkömmlichen Goldpartikeln durch zusätzliche Bestrahlung mit einem Pikosekunden Nd:Yag Laser. Bei den unbestrahlten Partikeln mit ihrer Unzahl an verschiedenen Formen zeigen nur ein Drittel der untersuchten Resonatoren ein Verhalten, das von der Theorie vorhergesagt wird, ohne das dies mit ihrer Form oder Größe korrelieren würde. Im Fall der bestrahlten Goldkugeln tritt eine spürbare Verbesserung ein, bei dem alle Resonatoren mit den theoretischen Rechnungen übereinstimmen. Eine Änderung der Oberflächenrauheit des Films zeigt hingegen keinen Einfluß auf die Resonanzen. Obwohl durch die Kombination von Goldkugeln und sehr glatten Metallfilmen eine sehr definierte Probengeometrie geschaffen wurde, sind die experimentell bestimmten Linienbreiten der Resonanzen immer noch wesentlich größer als die berechneten. Die Streuung der Daten, selbst für diese Proben, deutet auf weitere Faktoren hin, die die Spaltmoden beeinflußen, wie z.B. die genaue Form des Spalts. rnDie mit den Nanospalten verbundenen hohen Feldverstärkungen werden untersucht, indem ein mit Farbstoff beladenes Polyphenylen-Dendrimer in den Spalt eines aus Silber bestehenden Kugel-vor-Fläche Systems gebracht wird. Das Dendrimer in der Schale besteht lediglich aus Phenyl-Phenyl Bindungen und garantiert durch die damit einhergende Starrheit des Moleküls eine überragende Formstabiliät, ohne gleichzeitig optisch aktiv zu sein. Die 16 Dithiolan Endgruppen sorgen gleichzeitig für die notwendige Affinität zum Silber. Dadurch kann der im Inneren befindliche Farbstoff mit einer Präzision von wenigen Nanometern im Spalt zwischen den Metallstrukturen platziert werden. Der gewählte Perylen Farbstoff zeichnet sich wiederum durch hohe Photostabilität und Fluoreszenz-Quantenausbeute aus. Für alle untersuchten Partikel wird ein starkes Fluoreszenzsignal gefunden, das mindestens 1000-mal stärker ist, als das des mit Farbstoff überzogenen Metallfilms. Das Profil des Fluoreszenz-Anregungsspektrums variiert zwischen den Partikeln und zeigt im Vergleich zum freien Farbstoff eine zusätzliche Emission bei höheren Frequenzen, was in der Literatur als „hot luminescence“ bezeichnet wird. Bei der Untersuchung des Streuverhaltens der Resonatoren können wieder zwei unterschiedliche Arten von Resonatoren un-terschieden werden. Es gibt zunächst die Fälle, die bis auf die beschriebene Linienverbreiterung mit einer idealen Kugel-vor-Fläche Geometrie übereinstimmen und dann andere, die davon stark abweichen. Die Veränderungen der Fluoreszenz-Anregungsspektren für den gebundenen Farbstoffs weisen auf physikalische Mechanismen hin, die bei diesen kleinen Metall/Farbstoff Abständen eine Rolle spielen und die über eine einfache wellenlängenabhängige Verstärkung hinausgehen.
Resumo:
Plasmonic nanoparticles exhibit strong light scattering efficiency due to the oscillations of their conductive electrons (plasmon), which are excited by light. For rod-shaped nanoparticles, the resonance position is highly tunable by the aspect ratio (length/width) and the sensitivity to changes in the refractive index in the local environment depends on their diameter, hence, their volume. Therefore, rod-shaped nanoparticles are highly suitable as plasmonic sensors.rnWithin this thesis, I study the formation of gold nanorods and nanorods from a gold-copper alloy using a combination of small-angle X-ray scattering and optical extinction spectroscopy. The latter represents one of the first metal alloy nanoparticle synthesis protocols for producing rod-shaped single crystalline gold-copper (AuxCu(1-x)) alloyed nanoparticles. I find that both length and width independently follow an exponential growth behavior with different time-constants, which intrinsically leads to a switch between positive and negative aspect ratio growth during the course of the synthesis. In a parameter study, I find linear relations for the rate constants as a function of [HAuCl4]/[CTAB] ratio and [HAuCl4]/[seed] ratio. Furthermore, I find a correlation of final aspect ratio and ratio of rate constants for length and width growth rate for different [AgNO3]/[HAuCl4] ratios. I identify ascorbic acid as the yield limiting species in the reaction by the use of spectroscopic monitoring and TEM. Finally, I present the use of plasmonic nanorods that absorb light at 1064nm as contrast agents for photoacoustic imaging (BMBF project Polysound). rnIn the physics part, I present my automated dark-field microscope that is capable of collecting spectra in the range of 450nm to 1750 nm. I show the characteristics of that setup for the spectra acquisition in the UV-VIS range and how I use this information to simulate measurements. I show the major noise sources of the measurements and ways to reduce the noise and how the combination of setup charactersitics and simulations of sensitivity and sensing volume can be used to select appropriate gold rods for single unlabeled protein detection. Using my setup, I show how to estimate the size of gold nano-rods directly from the plasmon linewidth measured from optical single particle spectra. Then, I use this information to reduce the distribution (between particles) of the measured plasmonic sensitivity S by 30% by correcting for the systematic error introduced from the variation in particle size. I investigate the single particle scattering of bowtie structures — structures consisting of two (mostly) equilateral triangles pointing one tip at each other. I simulate the spectra of the structures considering the oblique illumination angle in my setup, which leads to additional plasmon modes in the spectra. The simulations agree well with the measurements form a qualitative point of view.rn
Resumo:
Biosensors find wide application in clinical diagnostics, bioprocess control and environmental monitoring. They should not only show high specificity and reproducibility but also a high sensitivity and stability of the signal. Therefore, I introduce a novel sensor technology based on plasmonic nanoparticles which overcomes both of these limitations. Plasmonic nanoparticles exhibit strong absorption and scattering in the visible and near-infrared spectral range. The plasmon resonance, the collective coherent oscillation mode of the conduction band electrons against the positively charged ionic lattice, is sensitive to the local environment of the particle. I monitor these changes in the resonance wavelength by a new dark-field spectroscopy technique. Due to a strong light source and a highly sensitive detector a temporal resolution in the microsecond regime is possible in combination with a high spectral stability. This opens a window to investigate dynamics on the molecular level and to gain knowledge about fundamental biological processes.rnFirst, I investigate adsorption at the non-equilibrium as well as at the equilibrium state. I show the temporal evolution of single adsorption events of fibrinogen on the surface of the sensor on a millisecond timescale. Fibrinogen is a blood plasma protein with a unique shape that plays a central role in blood coagulation and is always involved in cell-biomaterial interactions. Further, I monitor equilibrium coverage fluctuations of sodium dodecyl sulfate and demonstrate a new approach to quantify the characteristic rate constants which is independent of mass transfer interference and long term drifts of the measured signal. This method has been investigated theoretically by Monte-Carlo simulations but so far there has been no sensor technology with a sufficient signal-to-noise ratio.rnSecond, I apply plasmonic nanoparticles as sensors for the determination of diffusion coefficients. Thereby, the sensing volume of a single, immobilized nanorod is used as detection volume. When a diffusing particle enters the detection volume a shift in the resonance wavelength is introduced. As no labeling of the analyte is necessary the hydrodynamic radius and thus the diffusion properties are not altered and can be studied in their natural form. In comparison to the conventional Fluorescence Correlation Spectroscopy technique a volume reduction by a factor of 5000-10000 is reached.
Resumo:
Plasmonische Metallnanopartikel bündeln, verstärken und beeinflussen Licht auf nanoskopischer Ebene. Diese grundlegende Eigenschaft kommt von koheränten, kollektiven Schwingungen der Leitungsbandelektronen, die von einfallendem Licht resonant angeregt und lokalisierte Oberflächenplasmonenresonanz (LSPR) oder ‚Partikelplasmonen‘ genannt werden. Plasmonen in Metallnanopartikeln wurden bisher z.B. zur Erkennen von pathogenen Biomolekülen, bei der photothermischen Therapie und zur Verbesserung der Effizienz von Solarzellen verwendet. In dieser Arbeit werde ich meinen Fokus auf die Synthese und Funktionalisierung von Goldnanopartikeln zur Anwendung als Sensoren legen.rnrnKürzliche Verbesserungen in der nasschemischen Synthese haben zur Herstellung von Goldnanopartikel mit unterschiedlichen Formen und Größen geführt, die sich in ihren Sensoreigenschaften unterscheiden. Unter den unterschiedlichen Sensorgeometrien sind Goldnanostäbchen die bevorzugte Form zur Biomolekül-Sensorik durch LSPR. Nanostäbchen werden durch eine positiv geladene CTAB-Schicht stabilisiert, die Proteine bei neutralem pH-Wert anziehen kann. Die Adsorption und Desorption von Proteinen an der Nanopartikeloberfläche und damit die Bindungskinetiken von Proteinen kann auf Einzelmolekülebene erforscht werden. Ich zeige hier eine Studie mit hoher örtlicher und zeitlicher Auflösung um einzelne Bindungsereignisse von Fibronectin auf Goldnanostäbchen darzustellen.rnrnGoldnanostäbchen müssen mit spezifischen biologischen Erkennungselementen funktionalisiert werden um eine Analyterkennung oder Proteinwechselwirkung zu erreichen. Ich funktionalisiere Goldnanostäbchen mit kurzen DNA-Sequenzen (Aptamer-Sequenzen und NTA konjugierten Polihymidinen) und habe anhand diese unterschiedlich sensitiven Partikel eine Studie mit verschiedenen Analyten (oder Protein-Protein Wechselwirkungen) erfolgreich durchgeführt.rn rnPlasmonen von Nanopartikel-Clustern koppeln miteinander, was ihre Resonanzenergie ändert. Der kontrollierte Zusammenbau von Nanopartikeln zu Dimeren oder höher geordneten Strukturen wie ‚Core-Satellites‘ können dazu dienen ihre Sensitivität zu erhöhen. Diese Cluster bieten eine hohe Sensitivität auf Grund der Anwesenheit von plasmonischen Hotspots in der Lücke zwischen zwei Partikeln. Die Plasmonkopplung ist ein Phänomen, das abhängig vom Abstand zweier Partikel zueinander ist und bildet somit die Basis von sogenannten Plasmon-Linealen. Ich habe eine Strategie entwickelt um Dimere aus Hsp90 funktionalisierten Goldnanosphären zu bilden. Diese Technik wird nicht durch Ausbleichen oder das Blinken von Farbstoffen limitiert und ich zeige zum ersten Mal wie man dadurch dynamische Proteinkonformationen untersuchen kann.rn
Resumo:
Plasmons in metal nanoparticles respond to changes in their local environment by a spectral shift in resonance. Here, the potential of plasmonic metal nanoparticles for label-free detection and observation of biological systems is presented. Comparing the material silver and gold concerning plasmonic sensitivity, silver nanoparticles exhibit a higher sensitivity but their chemical instability under light exposure limits general usage. A new approach combining results from optical dark-field microscopy and transmission electron microscopy allows localization and quantification of gold nanoparticles internalized into living cells. Nanorods exposing a negatively charged biocompatible polymer seem to be promising candidates to sense membrane fluctuations of adherent cells. Many small nanoparticles being specific sensing elements can build up a sensor for parallel analyte detection without need of labeling, which is easy to fabricate, re-usable, and has sensitivity down to nanomolar concentrations. Besides analyte detection, binding kinetics of various partner proteins interacting with one protein of interest are accessible in parallel. Gold nanoparticles are able to sense local oscillations in the surface density of proteins on a lipid bilayer, which could not be resolved so far. Studies on the fluorescently labeled system and the unlabeled system identify an influence of the label on the kinetics.
Resumo:
The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.
Resumo:
We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.
Resumo:
Concepts of lateral ordering of epitaxial semiconductor quantum dots (QDs) are for the first time transferred to hybrid nanostructures for active plasmonics. We review our recent research on the self-alignment of epitaxial nanocrystals of In and Ag on ordered one-dimensional In(Ga)As QD arrays and isolated QDs by molecular beam epitaxy. By changing the growth conditions the size and density of the metal nanocrystals are easily controlled and the surface plasmon resonance wavelength is tuned over a wide range in order to match the emission wavelength of the QDs. Photoluminescence measurements reveal large enhancement of the emitted light intensity due to plasmon enhanced emission and absorption down to the single QD level.
Resumo:
Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance
Resumo:
A photonic crystal fiber selectively filled with silver nanoparticles dispersed in polydimethylsiloxane has been numerically studied via finite elements analysis. These nanoparticles possess a localized surface plasmon resonance in the visible region which depends on the refractive index of the surrounding medium. The refractive index of polydimethylsiloxane can be thermally tuned leading to the design of polarization tunable filters. Filters found with this setup show anisotropic attenuation of the x-polarization fundamental mode around ?x = 1200dB/cm remarkably higher than the y-polarization mode. Moreover, high fiber birefringence and birefringence reversal is observed in the spectral region of the plasmon.
Resumo:
The main aim of this thesis is the controlled and reproducible synthesis of functional materials at the nanoscale. In the first chapter, a tuning of morphology and magnetic properties of magnetite nanoparticles is presented. It was achieved by an innovative approach, which involves the use of an organic macrocycle (calixarene) to induce the oriented aggregation of NPs during the synthesis. This method is potentially applicable to the preparation of other metal oxide NPs by thermal decomposition of the respective precursors. Products obtained, in particular the multi-core nanoparticles, show remarkable magnetic and colloidal properties, making them very interesting for biomedical applications. The synthesis and functionalisation of plasmonic Au and Ag nanoparticles is presented in the second chapter. Here, a supramolecular approach was exploited to achieve a controlled and potentially reversible aggregation between Au and Ag NPs. This aggregation phenomena was followed by UV - visible spectroscopy and dynamic light scattering. In the final chapters, the conjugation of plasmonic and magnetic functionalities was tackled through the preparation of dimeric nanostructures. Au - Fe oxide heterodimeric nanoparticles were prepared and their magnetic properties thoroughly characterised. The results demonstrate the formation of FeO (wustite), together with magnetite, during the thermal decomposition of the iron precursor. By an oxidation process that preserves Au in the dimeric structures, wustite completely disappeared, with the formation of either magnetite and / or maghemite, much better from the magnetic point of view. The plasmon resonance of Au results damped by the presence of the iron oxide, a material with high refractive index, but it is still present if the Au domain of the nanoparticles is exposed towards the bulk. Finally, remarkable hyperthermia, also in vitro, was found for these structures.