967 resultados para PLASMINOGEN-ACTIVATOR INHIBITOR-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine which genes of the plasminogen activator (PA) system were expressed in osteoclasts, RNA extracted from microisolated mouse osteoclasts was used as template for reverse transcribed polymerase chain reaction (RT-PCR) with gene-specific primer pairs, Using this approach, the expression of RNAs for tissue-type plasminogen activator, urokinase-type plasminogen activator, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, protease nexin, and urokinase receptor isoform 1 (uPAR1) were detected in mouse osteoclasts. The expression of uPAR RNA in osteoclasts was confirmed by in situ hybridization with a uPAR1 probe, RNA encoding the uPAR isoform 2 was not detected in mouse osteoclasts, but a novel unspliced uPAR RNA variant was detected in these cells, The novel uPAR variant and uPAR1 RNA were also detected in mouse calvarial osteoblasts, kidney, muscle, and the mouse macrophage cell line J774A.1 by RT-PCR The presence of RNAs for most of the components of the PA system in osteoclasts suggests that it may have a functional role in this cell type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis: of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Our previous studies showed that the direct injection of an adenovirus construct expressing urokinase-type plasminogen activator (uPA) into experimental venous thrombi significantly reduces thrombus weight. The systemic use of adenovirus vectors is limited by inherent hepatic tropism and inflammatory response. As macrophages are recruited into venous thrombi, it is reasonable to speculate that these cells could be used to target the adenovirus uPA (ad-uPA) gene construct to the thrombus. The aims of this study were to determine whether macrophages transduced with ad-uPA have increased fibrinolytic activity and whether systemic injection of transduced cells could be used to target uPA expression to the thrombus and reduce its size. Methods - The effect of up-regulating uPA was examined in an immortalized macrophage cell line (MM6) and macrophages differentiated from human blood monocyte-derived macrophages (HBMMs). Cells were infected with ad-uPA or blank control virus (ad-blank). Fibrinolytic mediator expression, cell viability, and cytokine expression were measured by activity assays and enzyme-linked immunosorbent assays. Monocyte migration was measured using a modified Boyden chamber assay. A model of venous thrombosis was developed and characterized in mice with severe combined immunodeficiency (SCID). This model was used to study whether systemically administered macrophages over-expressing uPA reduced thrombus size. Uptake of HBMMs into the thrombus induced in these mice was confirmed by a combination of PKH2-labeled cell tracking and colocalization with human leukocyte antigen (HLA) by immunohistology. Results - Compared with ad-blank, treated HBMMs transduction with ad-uPA increased uPA production by >1000-fold (P = .003), uPA activity by 150-fold (P = .0001), and soluble uPA receptor (uPAR) by almost twofold (P = .043). Expression of plasminogen activator inhibitor (PAI-1) and PAI-2 was decreased by about twofold (P = .011) and threefold (P = .005), respectively. Up-regulation of uPA had no effect on cell viability or inflammatory cytokine production compared with ad-blank or untreated cells. Ad-uPA transduction increased the migration rate of HBMMs (about 20%, P = .03) and MM6 cells (>twofold, P = .005) compared with ad-blank treated controls. Human macrophage recruitment into the mouse thrombus was confirmed by the colocalization of HLA with the PKH2-marked cells. Systemic injection of uPA-up-regulated HBMMs reduced thrombus weight by approximately 20% compared with ad-blank (P = .038) or sham-treated controls (P = .0028). Conclusion - Transduction of HBBM with ad-uPA increases their fibrinolytic activity. Systemic administration of uPA up-regulated HBBMs reduced thrombus size in an experimental model of venous thrombosis. Alternative methods of delivering fibrinolytic agents are worth exploring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical exercise protects against the development of cardiovascular disease, partly by lowering plasmatic total cholesterol, LDL-cholesterol and increased HDL-cholesterol levels. In addition, it is now established that reduction plasmatic adiponectin and increased C-reactive protein (CRP) and plasminogen activator inhibitor-1 (PAI-1) levels play a role in the maintenance of an inflammatory state and in the development of cardiovascular disease. This study aimed to examine plasma lipid profile and inflammatory markers levels in individual with sedentary lifestyle and/or highly trained athletes at rest. Methods: Fourteen male subjects (sedentary lifestyle n = 7 and highly trained athletes n = 7) were recruited. Blood samples were collected after an overnight fast (similar to 12 h). The plasmatic lipid profile (Triglycerides, HDL-cholesterol, LDL-cholesterol, total cholesterol, LDL-oxidized and total cholesterol/HDL-c ratio), glucose, adiponectin, C - reactive protein and PAI-1 levels were determined. Results: Total cholesterol, LDL-cholesterol, TG and PAI-1 levels were lower in highly trained athletes group in relation to sedentary subjects (p < 0.01). In addition, we observed a positive correlation between PAI-1 and total cholesterol (r = 0.78; p < 0.0009), PAI-1 and LDL-c (r = 0.69; p < 0.006) and PAI-1 and TG levels (r = 0.56; p < 0.03). The plasma concentration of adiponectin, CRP, glucose, HDL-cholesterol and total cholesterol/HDL-c ratio levels were not different. These results indicate that lifestyle associated with high intensity and high volume exercise induces changes favourable in the lipid profile and PAI-1 levels and may reduce risk cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic syndrome is associated with an increased risk of developing cardiovascular diseases and Plasminogen activator inhibitor 1 (PAI-1) overexpression may play a significant role in this process. A positive correlation between adipose tissue gene expression of PAI-1 and its serum concentration has been reported. Furthermore, high serum levels of thyroid hormones (T3 and T4) and PAI-1 have been observed in obese children. The present study evaluates the impact of thyroid hormone treatment on white adipose tissue PAI-1 gene expression and its serum concentration. Male Wistar rats (60 days old) were treated for three weeks with T4 (50 µg/day, Hyper) or with saline (control). Additionally, 3T3-L1 adipocytes were treated for 24 h with T4 (100 nM) or T3 (100 nM). PAI-1 gene expression was determined by real-time PCR, while the serum concentration of PAI-1 was measured by ELISA using a commercial kit (Innovative Research, USA). Both the serum concentration of PAI-1 and mRNA levels were similar between groups in retroperitoneal and epididymal white adipose tissue. Using 3T3-L1 adipocytes, in vitro treatment with T4 and T3 increased the gene expression of PAI-1, suggesting non-genomic and genomic effects, respectively. These results demonstrate that thyroid hormones have different effects in vitro and in vivo on PAI-1 gene expression in adipocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The use of prolyl hydroxylase inhibitors such as l-mimosine (L-MIM) and dimethyloxaloylglycine (DMOG) to improve angiogenesis is a new approach for periodontal regeneration. In addition to exhibiting pro-angiogenic effects, prolyl hydroxylase inhibitors can modulate the plasminogen activator system in cells from non-oral tissues. This study assesses the effect of prolyl hydroxylase inhibitors on plasminogen activation by fibroblasts from the periodontium. METHODS Gingival and periodontal ligament fibroblasts were incubated with L-MIM and DMOG. To investigate whether prolyl hydroxylase inhibitors modulate the net plasminogen activation, kinetic assays were performed with and without interleukin (IL)-1. Moreover, plasminogen activators and the respective inhibitors were analyzed by casein zymography, immune assays, and quantitative polymerase chain reaction. RESULTS The kinetic assay showed that L-MIM and DMOG reduced plasminogen activation under basal and IL-1-stimulated conditions. Casein zymography revealed that the effect of L-MIM involves a decrease in urokinase-type plasminogen activator activity. In agreement with these findings, reduced levels of urokinase-type plasminogen activator and elevated levels of plasminogen activator inhibitor 1 were observed. CONCLUSION L-MIM and DMOG can reduce plasminogen activation by fibroblasts from the gingiva and the periodontal ligament under basal conditions and in the presence of an inflammatory cytokine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine endothelial cells are readily transformed in a single step by the polyomavirus oncogene encoding middle-sized tumor antigen. These cells (bEND.3) form tumors (hemangiomas) in mice which are lethal in newborn animals. The bEND.3 cells rapidly proliferate in culture and express little or no thrombospondin 1 (TS1). To determine the role of TS1 in regulation of endothelial cell phenotype, we stably transfected bEND.3 cells with a human TS1 expression vector. The cells expressing human TS1 were readily identified by their altered morphology and exhibited a slower growth rate and lower saturation density than the parental bEND.3 cells. The TS1-expressing cells also formed aligned cords of cells instead of clumps or cysts in Matrigel. Moreover, while the bEND.3 cells formed large tumors in nude mice within 48 hr, the TS1-expressing cells failed to form tumors even after 1 month. The TS1-transfected cells expressed transforming growth factor beta mRNA and bioactivity at levels similar to those of the parental or vector-transfected bEND.3 cells, indicating that the effects of TS1 expression are not due to the activation of transforming growth factor beta by TS1. TS1 expression resulted in a > 100-fold decrease in net fibrinolytic (urokinase-type plasminogen activator, uPA) activity due to more plasminogen-activator inhibitor 1 and less uPA secretion. TS1 thus appears to be an important regulator of endothelial cell phenotype required for maintaining the quiescent, differentiated state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urokinase plasminogen activator (uPA) system (uPAS) comprises the uPA, its cell membrane receptor (uPAR) and two specific inhibitors, the plasminogen activator inhibitor 1 (PAI-1) and 2 (PAI-2). The uPA converts the plasminogen in the serine protease plasmin, involved in a number of physiopathological processes requiring basement membrane (BM) or extracellular matrix (ECM) remodelling, including tumor progression and metastasis. The tumor-promoting role of PAS is not limited to the degradation of ECM and BM required for local diffusion and spread to distant sites of malignant cells, but widens to tumor cell proliferation, adhesion and migration, intravasation, growth at the metastatic site and neoangiogenesis. The relevance of uPAS in cancer progression has been confirmed by several studies which documented an increased expression of uPA, uPAR and PAI-1 in different human malignancies, and a positive correlation between the levels of one or more of them and a poor prognosis. For these reasons, the uPAS components have aroused considerable interest as suitable targets for anticancer therapy, and several pharmacological approaches aimed at inhibiting the uPA and/or uPAR expression or function in preclinical and clinical settings have been described. In the present manuscript, we will first glance at uPAS biological functions in human cancer progression and its clinical significance in terms of prognosis and therapy. We will then review the main findings regarding expression and function of uPAS components in thyroid cancer tissues along with the experimental and clinical evidence suggesting its potential value as molecular prognostic marker and therapeutic target in thyroid cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background-The Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial in 2368 patients with stable ischemic heart disease assigned before randomization to percutaneous coronary intervention or coronary artery bypass grafting strata reported similar 5-year all-cause mortality rates with insulin sensitization versus insulin provision therapy and with a strategy of prompt initial coronary revascularization and intensive medical therapy or intensive medical therapy alone with revascularization reserved for clinical indication(s). In this report, we examine the predefined secondary end points of cardiac death and myocardial infarction (MI). Methods and Results-Outcome data were analyzed by intention to treat; the Kaplan-Meier method was used to assess 5-year event rates. Nominal P values are presented. During an average 5.3-year follow-up, there were 316 deaths (43% were attributed to cardiac causes) and 279 first MI events. Five-year cardiac mortality did not differ between revascularization plus intensive medical therapy (5.9%) and intensive medical therapy alone groups (5.7%; P = 0.38) or between insulin sensitization (5.7%) and insulin provision therapy (6%; P = 0.76). In the coronary artery bypass grafting stratum (n = 763), MI events were significantly less frequent in revascularization plus intensive medical therapy versus intensive medical therapy alone groups (10.0% versus 17.6%; P = 0.003), and the composite end points of all-cause death or MI (21.1% versus 29.2%; P = 0.010) and cardiac death or MI (P = 0.03) were also less frequent. Reduction in MI (P = 0.001) and cardiac death/MI (P = 0.002) was significant only in the insulin sensitization group. Conclusions-In many patients with type 2 diabetes mellitus and stable ischemic coronary disease in whom angina symptoms are controlled, similar to those enrolled in the percutaneous coronary intervention stratum, intensive medical therapy alone should be the first-line strategy. In patients with more extensive coronary disease, similar to those enrolled in the coronary artery bypass grafting stratum, prompt coronary artery bypass grafting, in the absence of contraindications, intensive medical therapy, and an insulin sensitization strategy appears to be a preferred therapeutic strategy to reduce the incidence of MI. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT00006305. (Circulation. 2009;120:2529-2540.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Thrombosis has been widely described after the Fontan procedure. The vascular endothelium plays a central role in the control of coagulation and fibrinolysis. The aim of this study was to investigate if patients undergoing a modified Fontan procedure have impaired endothelial function and fibrinolysis in the late postoperative course. Patients and methods: We compared 23 patients aged from 7 to 26 years with age-matched healthy volunteers, collecting blood samples prior to and following standardized venous occlusion testing. Plasma levels of von Willebrand factor antigen, tissue-type plasminogen activator antigen, plasminogen activator inhibitor-1, and D-dimer were measured with enzyme-linked immunosorbent assay. Results: We found increased plasma levels of von Willebrand factor antigen in patients when compared to controls (p = 0.003). At the basal condition, concentrations of tissue-type plasminogen activator antigen and plasminogen activator inhibitor-1 antigen in the plasma, as well as their activity, were not significantly different between patients and controls. Following venous occlusion, concentrations of tissue-type plasminogen activator antigen in the plasma were significantly increased both in patients and controls, compared to pre-occlusion values. D-dimer was within the reference range. Multivariate discriminant analysis differentiated patients and their controls on the basis of differences for plasminogen activator inhibitor-1 and von Willebrand factor antigen (p = 0.0016). Conclusions: Our data suggest that patients with the Fontan circulation may have endothelial dysfunction, as indicated by raised levels of von Willebrand factor. Fibrinolysis seems to be relatively preserved, as suggested by appropriate response to venous occlusion.