994 resultados para PLANETARY-NEBULAE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a sample of planetary nebulae in the Galaxy's inner-disk and bulge is used to find the galactocentric distance that optimally separates these two populations in terms of their abundances. Statistical distance scales were used to investigate the distribution of abundances across the disk–bulge interface, while a Kolmogorov–Smirnov test was used to find the distance at which the chemical properties of these regions separate optimally. The statistical analysis indicates that, on average, the inner population is characterized by lower abundances than the outer component. Additionally, for the α-element abundances, the inner population does not follow the disk's radial gradient toward the Galactic Center. Based on our results, we suggest a bulge–disk interface at 1.5 kpc, marking the transition between the bulge and the inner disk of the Galaxy as defined by the intermediate-mass population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the first detailed kinematical analysis of the planetary nebula Abell 63, which is known to contain the eclipsing close-binary nucleus UU Sge. Abell 63 provides an important test case in investigating the role of close-binary central stars on the evolution of planetary nebulae. Longslit observations were obtained using the Manchester echelle spectrometer combined with the 2.1-m San Pedro Martir Telescope. The spectra reveal that the central bright rim of Abell 63 has a tube-like structure. A deep image shows collimated lobes extending from the nebula, which are shown to be high-velocity outflows. The kinematic ages of the nebular rim and the extended lobes are calculated to be 8400 +/- 500 and 12900 +/- 2800 yr, respectively, which suggests that the lobes were formed at an earlier stage than the nebular rim. This is consistent with expectations that disc-generated jets form immediately after the common envelope phase. A morphological-kinematical model of the central nebula is presented and the best-fitting model is found to have the same inclination as the orbital plane of the central binary system; this is the first proof that a close-binary system directly affects the shaping of its nebula. A Hubble-type flow is well-established in the morphological-kinematical modelling of the observed line profiles and imagery. Two possible formation models for the elongated lobes of Abell 63 are considered, (i) a low-density, pressure-driven jet excavates a cavity in the remnant asymptotic giant branch (AGB) envelope; (ii) high-density bullets form the lobes in a single ballistic ejection event.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates among the 3s(2)3p(4) levels of Cl II are used to derive the nebular emission-line intensity ratios R-1=I(6161.8 Angstrom)/I(8578.7 Angstrom) and R-2=I(6161.8 Angstrom)/I(9123.6 Angstrom) as a function of electron temperature (T-e) and density (N-e). The ratios are found to be very sensitive to changes in T-e but not N-e for densities lower than 10(5) cm(-3). Hence, they should, in principle, provide excellent optical T-e diagnostics for planetary nebulae. The observed values of R-1 and R-2 for the planetary nebulae NGC 6741 and IC 5117, measured from spectra obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope, imply temperatures in excellent agreement with those derived from other diagnostic lines formed in the same region of the nebula as [Cl II]. This provides some observational support for the accuracy of the [Cl II] line ratio calculations and hence the atomic data on which they are based. The [Cl II] 8578.7 and 9123.6 Angstrom lines are identified for the first time (to our knowledge) in a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9 m Anglo- Australian Telescope. However, the 6161.8 Angstrom feature is unfortunately too weak to be identified in the RR Telescopii observations, consistent with its predicted line strength.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT We present the first detailed spatiokinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrow-band imaging in the light of [NII]6584Å, [OIII]5007 Å and [SII]6717+6731Å, obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionization structure of Abell 41. Long-slit observations of the Ha and [NII]6584Å emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Mártir Telescope. These spectra, combined with the narrow-band imagery, were used to develop a spatiokinematical model of [NII]6584Å emission from Abell 41. The best-fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40 km s-1 at the waist. The symmetry axis of the model nebula is within 5° of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method`.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure-supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depending on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on an orbit with high angular momentum. Systems with these hybrid properties have recently been observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitative agreement with these observations and demonstrate that even mergers composed of non rotating, pressure-supported progenitor galaxies can produce early-type galaxies with significant rotation at large radii.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spectral data are presented, giving intensities of the Brackett ɤ (B7) line at six positions in M 42 and of the Brackett ten through fourteen (B10-B14) lines plus the He 4d3D-3p3p0 line at three positions in M 42. Observations of the Brackett ɤ line are also given for the planetary nebulae NGC 7027 and IC 418. Brackett gamma is shown to exhibit an anomalous satellite line in NGC 7027. Broadband data are presented, giving intensities at effective wavelengths of 1.25 μ, 1.65 μ, 2.2 μ, 3.5 μ and 4.8 μ for three positions in M 42.

Comparisons with visual and radio data as well as 12 micron and 20 micron data are used to derive reddening, electron temperatures, and electron densities for M 42 and the two planetaries, as well as a helium abundance for M 42. A representative electron temperature of 8400°K ± 1000°K, an electron density of 1.5 ±0.1 x 103 cm-3 and a He/H number density ratio of 0.10 +0.10/-0.05 are derived for the central region of M 42. The electron temperature is found to increase slightly with distance from the Trapezium.

M 42 is shown to emit in excess of the predicted recombination radiation throughout the entire infrared spectrum. The variations in the excess with wavelength and with position are analyzed to determine which of several physical processes may be operating. The longer wavelength infrared excess is shown to be dominated by dust emission, while the shorter wavelength infrared excess is caused by dust scattering. The dust is shown to be larger than the average interstellar particle. A new feature of the Orion red star ORS-1 is found in that it appears to have a reflection nebula around it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we investigate gas-phase chemistry in the remnant 'superwind' of a carbon-rich red giant star, during its transition to a planetary nebula. The interacting stellar winds model is used. It is found that during the first few hundred years of transition, significant abundances of a few small molecules and ions (e.g. CH+, CH2+, CH3+, CH, CH2, NH) may occur in the thin, dense, shocked shell of gas predicted by thiS model, but that most molecules observed in protoplanetary nebulae will be rapidly destroyed, through photodissociation by strong UV from the central star. If dense clumps are present during transition, they may allow the gas-phase formation and/or survival of small amounts of some molecules, such as HCN, CN, C2H2, and HC3N, until about 2000 yr after termination of the superwind; and young, fully developed planetary nebulae may show observable amounts of polyatomic molecules by this means. Such clumping may explain the existence of, e.g., HCN in NGC 7027.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and PAHs. This mixed chemistry is unlikely to be related to carbon dredge up, as third dredge-up is not expected to occur in the low mass bulge stars. We show that the phenomenon is widespread, and is seen in 30 nebulae out of our sample of 40. A strong correlation is found between strength of the PAH bands and morphology, in particular, the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. We conclude that the mixed chemistry phenomenon occurring in the galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an UV-irradiated, dense torus. © 2012 International Astronomical Union.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme.We found that five post-AGB stars showed a broad feature with a peak at 7.7 μm, that had not been classified before. Further, the 10-13 μm PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 μm rather than two distinct sharp peaks at 11.3 and 12.7 μm, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to planetary nebulae, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE ) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS ) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high ("probable") and moderate ("possible ") likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: Emission from Ar III is seen in planetary nebulae, in H II regions, and from laboratory plasmas. The analysis of such spectra requires accurate electron impact excitation data. Aims: The aim of this work is to improve the electron impact excitation data available for Ar2+, for application in studies of planetary nebulae and laboratory plasma spectra. The effects of the new data on diagnostic line ratios are also studied. Methods: Electron-impact excitation collision strengths have been calculated using the R-Matrix Intermediate-Coupling Frame-Transformation method and the R-Matrix Breit-Pauli method. Excitation cross sections are calculated between all levels of the configurations 3s^23p^4, 3s3p^5, 3p^6, 3p^53d, and 3s^23p^3nl (3d ≤ nl ≤ 5s). Maxwellian effective collision strengths are generated from the collision strength data. Results: Good agreement is found in the collision strengths calculated using the two R-Matrix methods. The collision strengths are compared with literature values for transitions within the 3s^23p4 configuration. The new data has a small effect on Te values obtained from the I(λ7135 Å+ λ7751 Å)/ I(λ5192 Å) line ratio, and a larger effect on the Ne values obtained from the I(λ7135 Å)/I(λ9 μm) line ratio. The final effective collision strength data is archived online.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent investigations on the central stars of planetary nebulae (CSPN) indicate that the masses based on model atmospheres can be much larger than the masses derived from theoretical mass-luminosity relations. Also, the dispersion in the relation between the modified wind momentum and the luminosity depends on the mass spread of the CSPN, and is larger than observed in massive hot stars. Since the wind characteristics probably depend on the metallicity, we analyze the effects on the modified wind momentum by considering the dispersion in this quantity caused by the stellar metallicity. Our CSPN masses are based on a relation between the core mass and the nebular abundances. We conclude that these masses agree with the known mass distribution both for CSPN and white dwarfs, and that the spread in the modified wind momentum can be explained by the observed metallicity variations.