977 resultados para PLA farine stampa 3D additive manufacturing materiali compositi FDM annealing bio-compositi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of conducting this thesis is to gather around information about additive manufacturing and to design a product to be additively manufactured. The specific manufacturing method dealt with in this thesis, is powder bed fusion of metals. Therefore when mentioning additive manufacturing in this thesis, it is referred to powder bed fusion of metals. The literature review focuses on the principle of powder bed fusion, the general process chain in additive manufacturing, design rules for additive manufacturing. Examples of success stories in additive manufacturing and reasons for selecting parts to be manufactured with additive manufacturing are also explained in literature review. This knowledge is demanded to understand the experimental part of the thesis. The experimental part of the thesis is divided into two parts. Part A concentrates on finding proper geometry for building self-supporting pipes and proper parameters for support structures of them. Part B of the experimental part concentrates on a case study of designing a product for additive manufacturing. As a result of experimental part A, the design process of self-supporting pipes, results of visual analysis and results of 3D scanning are presented. As a result of experimental part B the design process of the product is presented and compared to the original model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La fabbricazione additiva è una classe di metodi di fabbricazione in cui il componente viene costruito aggiungendo strati di materiale l’uno sull’altro, sino alla completa realizzazione dello stesso. Si tratta di un principio di fabbricazione sostanzialmente differente da quelli tradizionali attualmente utilizzati, che si avvalgono di utensili per sottrarre materiale da un semilavorato, sino a conferire all’oggetto la forma desiderata, mentre i processi additivi non richiedono l’utilizzo di utensili. Il termine più comunemente utilizzato per la fabbricazione additiva è prototipazione rapida. Il termine “prototipazione”’ viene utilizzato in quanto i processi additivi sono stati utilizzati inizialmente solo per la produzione di prototipi, tuttavia con l’evoluzione delle tecnologie additive questi processi sono sempre più in grado di realizzare componenti di elevata complessità risultando competitivi anche per volumi di produzione medio-alti. Il termine “rapida” viene invece utilizzato in quanto i processi additivi vengono eseguiti molto più velocemente rispetto ai processi di produzione convenzionali. La fabbricazione additiva offre diversi vantaggi dal punto di vista di: • velocità: questi processi “rapidi” hanno brevi tempi di fabbricazione. • realizzazione di parti complesse: con i processi additivi, la complessità del componente ha uno scarso effetto sui tempi di costruzione, contrariamente a quanto avviene nei processi tradizionali dove la realizzazione di parti complesse può richiedere anche settimane. • materiali: la fabbricazione additiva è caratterizzata dalla vasta gamma di materiali che può utilizzare per la costruzione di pezzi. Inoltre, in alcuni processi si possono costruire pezzi le cui parti sono di materiali diversi. • produzioni a basso volume: molti processi tradizionali non sono convenienti per le produzioni a basso volume a causa degli alti costi iniziali dovuti alla lavorazione con utensili e tempi di setup lunghi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the manufacturing industry the term Process Planning (PP) is concerned with determining the sequence of individual manufacturing operations needed to produce a given part or product with a certain machine. In this technical report we propose a preliminary analysis of scientific literature on the topic of process planning for Additive Manufacturing (AM) technologies (i.e. 3D printing). We observe that the process planning for additive manufacturing processes consists of a small set of standard operations (repairing, orientation, supports, slicing and toolpath generation). We analyze each of them in order to emphasize the most critical aspects of the current pipeline as well as highlight the future challenges for this emerging manufacturing technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 10: Sustainability and Trust

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, the teaching of human anatomy in health sciences has been based on the use of cadaveric material and bone parts for practical study. The bone materials get deteriorated and hardly mark the points of insertion of muscles. However, the advent of new technologies for 3D printing and creation of 3D anatomical models applied to teaching, has enabled to overcome these problems making teaching more dynamic, realistic and attractive. This paper presents some examples of the construction of three-dimensional models of bone samples, designed using 3D scanners for posterior printing with addition printers or polymer injection printers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is going to show the activities performed in the frame of my PhD studies at the University of Bologna, under the supervision of Prof. Mauro Comes Franchini, at the Department of Industrial Chemistry “Toso Montanari”. The main topic of this dissertation will be the study of organic-inorganic hybrid nanostructures and materials for advanced applications in different fields of materials technology and development such as theranostics, organic electronics and additive manufacturing, also known as 3D printing. This work is therefore divided into three chapters, that recall the fundamentals of each subject and to recap the state-of-the-art of scientific research around each topic. In each chapter, the published works and preliminary results obtained during my PhD career will be discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript represents an overview on the studies I was involved in during my PhD at the Industrial Chemistry Department “Toso Montanari”, in the ASOM (Advanced Smart Organic Materials) research group under the supervision of Prof. Letizia Sambri and Prof. Mauro Comes Franchini. Those research have been focused on the development of organic materials for advanced applications in different fields, among which organic electronics, additive manufacturing (3D Printing) and biomedical applications can be underlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Da anni è iniziata la quarta rivoluzione industriale che ha portato all’industria 4.0 e che, a differenza delle precedenti, è trainata da diverse tecnologie, tra cui l’Additive Manufacturing (AM). Lo scopo della tesi è quello di analizzare i prodotti ottenuti tramite AM e le loro proprietà meccaniche (resistenza a trazione, durezza, vita a fatica…) per paragonarli con quelli ottenuti tramite metodi convenzionali (fonderia, lavorazione alle macchine utensili…). Il primo capitolo introduttivo presenta le principali caratteristiche del processo, tra cui: i materiali utilizzati, i parametri, i vantaggi e gli svantaggi rispetto ai tradizionali metodi produttivi e l’evoluzione della tecnologia. Il secondo capitolo tratta più in particolare degli acciai, delle leghe di alluminio e di titanio, illustrando le principali tecnologie utilizzate e l’influenza dei parametri di processo e mette, poi, in relazione la microstruttura che si crea in seguito ad AM con le proprietà meccaniche ottenibili, anche in virtù di post-trattamenti. Nel terzo capitolo sono esaminati i materiali polimerici. Vengono illustrate le principali tecnologie utilizzate e le proprietà meccaniche ottenibili in relazione alla materia prima utilizzata e ai parametri di processo. Infine, sono valutati gli effetti del rinforzo in fibra sulle proprietà meccaniche. Nel capitolo finale, si traggono le conclusioni sull’utilità dell’AM per capirne l’importante ruolo all’interno della fabbricazione. Si analizza brevemente il mercato italiano relativo alle tecnologie additive e si fa un accenno a quelli che potrebbero essere gli sviluppi nei prossimi anni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’Additive Manufacturing è una tecnologia che ormai da qualche anno sta diventando sempre piu’ utilizzata in numerosi ambiti, tra cui l’automotive. In questo settore sono molte le aziende che stanno sperimentando e cercando di inglobare tale processo al loro interno. Tra queste l’Università di Bologna, dove un team studentesco motociclistico si occupa della creazione di un prototipo di moto elettrica da competizione. Nell'intento di utilizzare tale tecnologia, sono numerose le informazioni necessarie per la corretta progettazione. Infatti, le caratteristiche dei materiali che vengono usati principalmente non sono ancora del tutto chiare e presentano alcuni aspetti poco investigati. Per questo motivo, in tale progetto si è deciso di caratterizzare a fatica provini realizzati in AlSi10Mg che presentassero una particolare geometria, per indagare anche l’influenza dello spessore. Sono quindi stati realizzati i campioni, anche con alcuni trattamenti di post-processo e sono poi stati osservati i risultati a fatica e alcune caratteristiche, tra cui: porosità, densità e struttura dei bagni di fusione. Tali valori riscontrati sono poi stati confrontati con quelli ottenuti in altri studi, cercando di comprendere differenze e motivazioni dei fenomeni osservati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato descrive un lavoro il cui fine ultimo è valutare la fattibilità di una applicazione dell’Additive Manufacturing allo sviluppo di prodotti per il settore sportivo. In particolare, sfruttando la tecnica denominata Fused Deposition Modelling (FDM), si vuole riprodurre la forma di una parete d’arrampicata di roccia. Questa applicazione potrebbe trovare impiego nelle palestre indoor da arrampicata per garantire una esperienza simile a quella reale in un ambiente chiuso, senza problematiche dovute all’influenza delle condizioni atmosferiche e con rischi minori. Per l’acquisizione della geometria di una roccia reale ai fini di realizzare una replica in Additive, si è ritenuto di utilizzare tecniche di Reverse Engineering e, in particolare, la tecnica di scansione 3D basata sull’emissione di luce bianca. Questa tecnologia consente di acquisire tutti i dettagli e le proprietà che un oggetto presenta, creando un modello 3D digitale che rispecchia esattamente il componente reale con cui, successivamente, si potrebbe realizzare una replica accurata del soggetto di partenza, una roccia nel caso in esame, tramite il processo di stampa 3D. Pertanto, lo scopo dell’elaborato è presentare la metodologia che potrebbe essere seguita per riprodurre in Additive una roccia reale. La tesi descrive, quindi, come potrebbe essere svolta la scansione. L'attività si è conclusa con la produzione di un prototipo di roccia tramite tecniche di Additive Manufacturing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although being studied only for few years, Wire and Arc Additive Manufacturing (WAAM) will become the predominant way of producing stainless-steel elements in a near-like future. The analysis and study of such elements has yet to be defined in a proper way, but the projects regarding this subject are innovating more and more thanks to the findings discovered by the latter. This thesis is focused on an initial stage on the analysis of mechanical and geometrical properties of such stainless-steel elements produced by MX3D laboratories in Amsterdam, and to perform a calibration of the design strength values by means of Annex D of Eurocode 0, which talks about the analysis of the semi-probabilistic safety factors, hence the definition of characteristic values. Moreover, after testing the stainless-steel specimens by means of strain gauges and after obtaining mechanical and geometrical properties, a statistical analysis of such properties and an evaluation of characteristic values is performed. After this, there is to execute the calibration of design strength values of WAAM inclined bars and intersections.