957 resultados para PI(0) production
Resumo:
An der Drei-Spektrometer-Anlage am Beschleuniger MAMI wurde ein Elektronpolarimeter aufgebaut, das die longitudinale Spinpolarisation für Strahlenergien von 500-880 MeV bestimmt. Messprinzip ist die Møller-Streuung. Weiterhin wird ein Experiment zur Bestimmung der Strahlhelizitäts-Asymmetrie in resonanter Elektroproduktion neutraler Pionen am Proton vorgestellt. Diese Observable bietet Zugang zu nichtresonanten Untergrundamplituden in der Nukleon-Delta-Anregung, die im Hinblick auf die Extraktion der Quadrupolamplituden in diesem Übergang wichtig sind.
Resumo:
Der semileptonische Zerfall K^±→π^0 μ^± υ ist ein geeigneter Kanal zur Be-stimmung des CKM-Matrixelementes 〖|V〗_us |. Das hadronische Matrixelement dieses Zerfalls wird durch zwei dimensionslose Formfaktoren f_± (t) beschrieben. Diese sind abhängig vom Impulsübertrag t=〖(p_K-p_π)〗^2 auf das Leptonpaar. Zur Bestimmung von 〖|V〗_us | dienen die Formfaktoren als wichtige Parameter zur Berechnung des Phasenraumintegrals dieses Zerfalls. Eine präzise Messung der Formfaktoren ist zusätzlich dadurch motiviert, dass das Resultat des NA48-Experimentes von den übrigen Messungen der Experimente KLOE, KTeV und ISTRA+ abweicht. Die Daten einer Messperiode des NA48/2 -Experimentes mit offenem Trigger aus dem Jahre 2004 wurden analysiert. Daraus wählte ich 1.8 Millionen K_μ3^±-Zerfallskandidaten mit einem Untergrundanteil von weniger als 0.1% aus. Zur Bestimmung der Formfaktoren diente die zweidimensionale Dalitz-Verteilung der Daten, nachdem sie auf Akzeptanz des Detektors und auf radiative Effekte korrigiert war. An diese Verteilung wurde die theoretische Parameter-abhängige Funktion mit einer Chiquadrat-Methode angepasst. Es ergeben sich für quadratische, Pol- und dispersive Parametrisierung folgende Formfaktoren: λ_0=(14.82±〖1.67〗_stat±〖0.62〗_sys )×〖10〗^(-3) λ_+^'=(25.53±〖3.51〗_stat±〖1.90〗_sys )×〖10〗^(-3) λ_+^''=( 1.40±〖1.30〗_stat±〖0.48〗_sys )×〖10〗^(-3) m_S=1204.8±〖32.0〗_stat±〖11.4〗_(sys ) MeV/c^2 m_V=(877.4±〖11.1〗_stat±〖11.2〗_(sys ) MeV/c^2 LnC=0.1871±〖0.0088〗_stat±〖0.0031〗_(sys )±=〖0.0056〗_ext Λ_+=(25.42±〖0.73〗_stat±〖0.73〗_(sys )±=〖1.52〗_ext )×〖10〗^(-3) Die Resultate stimmen mit den Messungen der Experimente KLOE, KTeV und ISTRA+ gut überein, und ermöglichen eine Verbesserung des globalen Fits der Formfaktoren. Mit Hilfe der dispersiven Parametrisierung der Formfaktoren, unter Verwendung des Callan-Treiman-Theorems, ist es möglich, einen Wert für f_± (0) zu bestimmen. Das Resultat lautet: f_+ (0)=0.987±〖0.011〗_(NA48/2)±〖0.008〗_(ext ) Der für f_+ (0) berechnete Wert stimmt im Fehler gut mit den vorherigen Messungen von KTeV, KLOE und ISTRA+ überein, weicht jedoch um knapp zwei Standardabweichungen von der theoretischen Vorhersage ab.
Resumo:
Among all possible realizations of quark and antiquark assembly, the nucleon (the proton and the neutron) is the most stable of all hadrons and consequently has been the subject of intensive studies. Mass, shape, radius and more complex representations of its internal structure are measured since several decades using different probes. The proton (spin 1/2) is described by the electric GE and magnetic GM form factors which characterise its internal structure. The simplest way to measure the proton form factors consists in measuring the angular distribution of the electron-proton elastic scattering accessing the so-called Space-Like region where q2 < 0. Using the crossed channel antiproton proton <--> e+e-, one accesses another kinematical region, the so-called Time-Like region where q2 > 0. However, due to the antiproton proton <--> e+e- threshold q2th, only the kinematical domain q2 > q2th > 0 is available. To access the unphysical region, one may use the antiproton proton --> pi0 e+ e- reaction where the pi0 takes away a part of the system energy allowing q2 to be varied between q2th and almost 0. This thesis aims to show the feasibility of such measurements with the PANDA detector which will be installed on the new high intensity antiproton ring at the FAIR facility at Darmstadt. To describe the antiproton proton --> pi0 e+ e- reaction, a Lagrangian based approach is developed. The 5-fold differential cross section is determined and related to linear combinations of hadronic tensors. Under the assumption of one nucleon exchange, the hadronic tensors are expressed in terms of the 2 complex proton electromagnetic form factors. An extraction method which provides an access to the proton electromagnetic form factor ratio R = |GE|/|GM| and for the first time in an unpolarized experiment to the cosine of the phase difference is developed. Such measurements have never been performed in the unphysical region up to now. Extended simulations were performed to show how the ratio R and the cosine can be extracted from the positron angular distribution. Furthermore, a model is developed for the antiproton proton --> pi0 pi+ pi- background reaction considered as the most dangerous one. The background to signal cross section ratio was estimated under different cut combinations of the particle identification information from the different detectors and of the kinematic fits. The background contribution can be reduced to the percent level or even less. The corresponding signal efficiency ranges from a few % to 30%. The precision on the determination of the ratio R and of the cosine is determined using the expected counting rates via Monte Carlo method. A part of this thesis is also dedicated to more technical work with the study of the prototype of the electromagnetic calorimeter and the determination of its resolution.
Resumo:
The excitation spectrum is one of the fundamental properties of every spatially extended system. The excitations of the building blocks of normal matter, i.e., protons and neutrons (nucleons), play an important role in our understanding of the low energy regime of the strong interaction. Due to the large coupling, perturbative solutions of quantum chromodynamics (QCD) are not appropriate to calculate long-range phenomena of hadrons. For many years, constituent quark models were used to understand the excitation spectra. Recently, calculations in lattice QCD make first connections between excited nucleons and the fundamental field quanta (quarks and gluons). Due to their short lifetime and large decay width, excited nucleons appear as resonances in scattering processes like pion nucleon scattering or meson photoproduction. In order to disentangle individual resonances with definite spin and parity in experimental data, partial wave analyses are necessary. Unique solutions in these analyses can only be expected if sufficient empirical information about spin degrees of freedom is available. The measurement of spin observables in pion photoproduction is the focus of this thesis. The polarized electron beam of the Mainz Microtron (MAMI) was used to produce high-intensity, polarized photon beams with tagged energies up to 1.47 GeV. A "frozen-spin" Butanol target in combination with an almost 4π detector setup consisting of the Crystal Ball and the TAPS calorimeters allowed the precise determination of the helicity dependence of the γp → π0p reaction. In this thesis, as an improvement of the target setup, an internal polarizing solenoid has been constructed and tested. A magnetic field of 2.32 T and homogeneity of 1.22×10−3 in the target volume have been achieved. The helicity asymmetry E, i.e., the difference of events with total helicity 1/2 and 3/2 divided by the sum, was determined from data taken in the years 2013-14. The subtraction of background events arising from nucleons bound in Carbon and Oxygen was an important part of the analysis. The results for the asymmetry E are compared to existing data and predictions from various models. The results show a reasonable agreement to the models in the energy region of the ∆(1232)-resonance but large discrepancies are observed for energy above 600 MeV. The expansion of the present data in terms of Legendre polynomials, shows the sensitivity of the data to partial wave amplitudes up to F-waves. Additionally, a first, preliminary multipole analysis of the present data together with other results from the Crystal Ball experiment has been as been performed.
Resumo:
Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle psi about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P-T relative to the direction of the incident beam, and the Feynman variable x(F). The sin psi* amplitudes are positive for pi(+) and K+ slightly negative for pi(-) and consistent with zero for K-, with particular P-T but weak x(F) dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Neutral pion and eta meson production in proton-proton collisions at root s=0.9 TeV and root s=7 TeV
Resumo:
The first measurements of the invariant differential cross sections of inclusive pi(0) and eta meson production at mid-rapidity in proton-proton collisions root s = 0.9 TeV and root s = 7 TeV are reported. The pi(0) measurement covers the ranges 0.4 < p(T) < 7 GeV/c and 0.3 < p(T) < 25 GeV/c for these two energies, respectively. The production of eta mesons was measured at root s = 7 TeV in the range 0.4 < p(T) < 15 GeV/c. Next-to-Leading Order perturbative QCD calculations, which are consistent with the pi(0) spectrum at root s = 0.9 TeV, overestimate those of pi(0) and eta mesons at root s = 7 TeV, but agree with the measured eta/pi(0) ratio at root s = 7 TeV. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
With an effective Lagrangian approach, we analyze several NN -> NN pi pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440) -> N sigma in the near-threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440) -> Delta pi, double-Delta, Delta(1600) -> N*(1440)pi, Delta(1600) -> Delta pi and Delta(1620) -> Delta pi. There are also sizable contributions from Delta -> Delta pi, Delta -> N pi, N -> Delta pi, and nucleon pole at energies close to the threshold. We give a good reproduction to the total cross sections up to beam energies of 2.2 GeV except for the pp -> pp pi(0)pi(0) channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp -> pp pi(+)p pi(-), pp -> nn pi(+)pi(+), and pp -> pp pi(0)pi(0) which are measured at CELSIUS and COSY.
Resumo:
A new measurement of subthreshold K*(892)(0) and K-0 production is presented. The experimental data complete the measurement of strange particles produced in Al + Al collisions at 1.9A GeV measured with the FOPI detector at SIS at GSI (Darmstadt). The K*(892)(0)/K-0 yield ratio is found to be 0.0315 +/- 0.006(stat.) +/- 0.012(syst.) and is in good agreement with the transport model prediction. These measurements provide information on the in-medium cross section of K+-pi(-) fusion, which is the dominant process in subthreshold K*(892)(0) production.
Resumo:
We present a measurement of pi(+)pi(-)pi(+)pi(-) photonuclear production in ultraperipheral Au-Au collisions at root s(NN) = 200 GeV from the STAR experiment. The pi(+)pi(-)pi(+)pi(-) final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi(+)pi(-)pi(+)pi(-) invariant mass spectrum of the coherent events exhibits a broad peak around 1540 +/- 40 MeV/c(2) with a width of 570 +/- 60 MeV/c(2), in agreement with the photoproduction data for the rho(0)(1700). We do not observe a corresponding peak in the pi(+)pi(-) final state and measure an upper limit for the ratio of the branching fractions of the rho(0)(1700) to pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-) of 2.5% at 90% confidence level. The ratio of rho(0)(1700) and rho(0)(770) coherent production cross sections is measured to be 13.4 +/- 0.8(stat.) +/- 4.4(syst.)%.
Resumo:
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301
Resumo:
The quark model successfully describes all ground state bary-ons as members of $SU(N)$ flavour multiplets. For excited baryon states the situation is totally different. There are much less states found in the experiment than predicted in most theoretical calculations. This fact has been known for a long time as the 'missing resonance problem'. In addition, many states found in experiments are only poorly measured up to now. Therefore, further experimental efforts are needed to clarify the situation.rnrnAt mbox{COMPASS}, reactions of a $190uskgigaeVperclight$ hadron beam impinging on a liquid hydrogen target are investigated.rnThe hadron beam contains different species of particles ($pi$, $K$, $p$). To distinguish these particles, two Cherenkov detectors are used. In this thesis, a new method for the identification of particles from the detector information is developed. This method is based on statistical approaches and allows a better kaon identification efficiency with a similar purity compared to the method, which was used before.rnrnThe reaction $pprightarrow ppX$ with $X=(pi^0,~eta,~omega,~phi)$ is used to study different production mechanisms. A previous analysis of $omega$ and $phi$ mesons is extended to pseudoscalar mesons. As the resonance contributions in $peta$ are smaller than in $ppi^0$ a different behaviour of these two final states is expected as a function of kinematic variables. The investigation of these differences allows to study different production mechanisms and to estimate the size of the resonant contribution in the different channels.rnrnIn addition, the channel $pprightarrow ppX$ allows to study baryon resonances in the $pX$ system.rnIn the mbox{COMPASS} energy regime, the reaction is dominated by Pomeron exchange. As a Pomeron carries vacuum quantum numbers, no isospin is transferred between the target proton and the beam proton. Therefore, the $pX$ final state has isospin $textstylefrac{1}{2}$ and all baryon resonances in this channel are $N^ast$ baryons. This offers the opportunity to do spectroscopy without taking $Delta$ resonances into account. rnrnTo disentangle the contributions of different resonances a partial wave analysis (PWA) is used. Different resonances have different spin and parity $J^parity$, which results in different angular distributions of the decay particles. These angular distributions can be calculated from models and then be fitted to the data. From the fit the contributions of the single resonances as well as resonance parameters -- namely the mass and the width -- can be extracted. In this thesis, two different approaches for a partial wave analysis of the reaction $pprightarrow pppi^0$ are developed and tested.
Resumo:
A combined mass and particle identification fit is used to make the first observation of the decay Bs --> Ds K and measure the branching fraction of Bs --> Ds K relative to Bs --> Ds pi. This analysis uses 1.2 fb^-1 integrated luminosity of pbar-p collisions at sqrt(s) = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron collider. We observe a Bs --> Ds K signal with a statistical significance of 8.1 sigma and measure Br(Bs --> Ds K)/Br(Bs --> Ds pi) = 0.097 +- 0.018(stat) +- 0.009(sys).
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model, the dynamics of strangeness (K-0,K-+, Lambda, and Sigma(-,0,+)) production in heavy-ion collisions near threshold energies is investigated systematically, with the strange particles considered to be produced mainly by inelastic collisions of baryon-baryon and pion-baryon. Collisions in the region of suprasaturation densities of the dense baryonic matter formed in heavy-ion collisions dominate the yields of strangeness production. Total multiplicities as functions of incident energies and collision centralities are calculated with the Skyrme parameter SLy6. The excitation function of strangeness production is analyzed and also compared with the KaoS data for K+ production in the reactions C-12 + C-12 and Au-197 + Au-197.
Resumo:
We report the first observation of two Cabibbo-suppressed ecay modes, Xi(+)(c) -> Sigma(+)pi(-)pi(+) and Xi c+ -> Sigma(-)pi(+)pi(+). We observe 59 +/- 14 over a background of 87, and 22 +/- 8 over a background of 13 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 Gev/c Sigma(-) beam. The branching ratios of the decays relative to the Cabibbo-favored Xi c+ -> Xi(-)pi(+)pi(+) are measured to be B(Xi(+)(c) -> Sigma(+)pi(-)pi(+))/B(Xi(+)(c) -> Xi(-)pi(+)pi(+)) = 0.48 +/- 0.20, and B(Xi(+)(c) -> Sigma(-)pi(+)pi(+))/B(Xi(+)(c) -> Sigma(-)pi(+)pi(+)) = 0.18 +/- 0.09, respectively. We also report branching ratios for the same decay modes of the Delta(+)(c) relative to Delta(+)(c) -> pK(-)pi(+.) (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.