674 resultados para PHENYLPYRAZOLE INSECTICIDES
Resumo:
A Culex quinquefasciatus Say 1823 strain with resistant genes to organophosphates was tested in the laboratory to know the reproductive potential after exposure, as larvae, at the LC30 and LC70 (mg/l) of three organophosphorus insecticides: malathion, chlorpyrifos and methyl-pirimiphos. Data showed that fecundity was decreased significantly by malathion at LC30 = 0.0025 and LC70 = 0.0075, whereas fertility has a no significant decrement by chlorpyrifos and methyl-pirimiphos at the LC70 (0.000016, 0.00043). The sexual index was affected by chlorpyrifos and methyl-pirimiphos showing a greater number of adult females.
Resumo:
As pyrethroids are presently the favored group of insecticides to control triatomines, we performed a series of bioassays to determine the intrinsic activity of some of the main compounds used in the control campaigns, against five of the main species of triatomines to be controlled. Comparing the insecticides it can be seen that lambdacyhalothrin is more effective than the other three pyrethroids, both considering the LD50 and 99 for all the three species with comparable results. On Triatoma infestans the LD50 of lambdacyhalothrin was followed by that of alfacypermethrin, cyfluthrin and deltamethrin. On Rhodnius prolixus the sequence, in decreasing order of activity, was lambdacyhalothrin, alfacypermethrin, deltamethrin and cyfluthrin. Some modifications can be seen when we compare the LD99, that has more to see to what happens in the field. T. brasiliensis showed to be as sensible to lambdacyhalothrin as T. infestans, the most susceptible for this product. By the other side T. sordida is the least susceptible considering the LD99 of this insecticide.
Resumo:
Since the reintroduction of Aedes aegypti in the state of São Paulo, in the middle of the 1980-decade, organophosphate insecticides are being used to control the dengue vector. In 1996, an annual program for monitoring the susceptibility of Ae. aegypti to the insecticides was implemented. Some of the results of this monitoring program are presented. Ae. aegypti populations from ten localities have been submitted to bioassays with the diagnostic dose of temephos and fenitrothion. Only two (Marília and Presidente Prudente) remain susceptible to both insecticides and one (Santos) exhibits true resistance. Ae. aegypti from the remaining localities showed an incipient altered susceptibility. Resistance ratios varied from 1.2 to 2.9 for temephos and from 1.5 to 3.2 to fenitrothion, indicating moderate levels of resistance. Biochemical assays did not detect alterations in the enzyme acetilcholinesterase, but indicated that resistance is associated with esterases.
Resumo:
Triatoma infestans (Klug) is the main vector of Chagas disease, which is a public health concern in most Latin American countries. The prevention of Chagas disease is based on the chemical control of the vector using pyrethroid insecticides. In the last decade, different levels of deltamethrin resistance have been detected in certain areas of Argentina and Bolivia. Because of this, alternative non-pyrethroid insecticides from different chemical groups were evaluated against two T. infestans populations, NFS and El Malá, with the objective of finding new insecticides to control resistant insect populations. Toxicity to different insecticides was evaluated in a deltamethrin-susceptible and a deltamethrin-resistant population. Topical application of the insecticides fenitrothion and imidacloprid to first nymphs had lethal effects on both populations, producing 50% lethal dose (LD50) values that ranged from 5.2-28 ng/insect. However, amitraz, flubendiamide, ivermectin, indoxacarb and spinosad showed no insecticidal activity in first instars at the applied doses (LD50 > 200 ng/insect). Fenitrothion and imidacloprid were effective against both deltamethrin-susceptible and deltamethrin-resistant populations of T. infestans. Therefore, they may be considered alternative non-pyrethroid insecticides for the control of Chagas disease.
Resumo:
Aggregating brain cell cultures of fetal rat telencephalon can be grown in a chemically defined medium for extended periods of time. After a phase of intense mitotic activity, these three-dimensional cell cultures undergo extensive morphological differentiation, including synaptogenesis and myelination. To study the developmental toxicity of organophosphorus compounds (OP), aggregating brain cell cultures were treated with parathion. Protein content and cell type-specific enzyme activities were not affected up to a concentration of 10(5) M. Gliosis, characterized by an increased staining for glial fibrillary acidic protein (GFAP), was observed in immature and in differentiated cells. In contrast, uridine incorporation and myelin basic protein (MBP) immunoreactivity revealed strong differences in sensitivity between these two developmental stages. These results are in agreement with the view that in vivo the development-dependent toxicity is not only due to changes in hepatic detoxification, but also to age-related modifications in the susceptibility of the different populations of brain cells. Furthermore, they underline the usefulness of histotypic culture systems with a high developmental potential, such as aggregating brain cell cultures, and stress the importance of applying a large range of criteria for testing the developmental toxicity of potential neurotoxicants.
Resumo:
Thrips are reported as important pests on table grapes in United States and several countries of Europe. Damage caused by thrips, particulary Frankliniella occidentalis, was observed on niagara table grape crop in Limeira-SP, Brazil. During the blooming period, high thrips densities were observed feeding on pollen and small berries. The symptoms left were more visible after the development of the berries and were characterized by dark scars and suberized surface on berries, sometimes causing the berry to crack, and the seed to prolapse. The effect of insecticides thiacloprid or methiocarb, associated or not with the entomopathogenic fungus Metarhizium anisopliae were evaluated during the blooming period. For evaluation of thrips damage on fruits, the treatments were applied three additional times, 7, 14 and 21 days after the first application. The treatments were: a) M. anisopliae (strain 1037) 1x10(7) conidia/mL; b) thiacloprid 20mL/100L; c-d) methiocarb 100 and 150mL/100L; e) methiocarb 100mL/100L + M. anisopliae 1x10(7) conidia/mL. Only methiocarb, associated or not with the fungus, was effective in reducing thrips infestation, and no phytotoxic damage was observed. The efficiency of methiocarb 150mL/100L and the insecticide associated with the fungus for the control of the thrips population was 84.2 and 95.5%, respectively. In both cases, there was a reduction of approximately 70% in the number of berries with scars symptoms. For control of thrips on table grapes, chemical insecticides associated or not with M. anisopliae should be applied during the blooming period of the crop.
Resumo:
Studies on persistence and degradation of the synthetic pyrethroid insecticides, permethrin and fenvalerate, were carried out under natural environmental conditions of the Niagara Peninsula. Permethrin and fenvalerate were treated on apple foliage atrat~s of 0.21 kg(AI)!ha and 0.14 kg(AI)/ha, respectively. The initial cis- and trans-permethrin spray deposits were found to be 13.5 ppm and 19.2 ppm, respectively and 38.0 ppm was observed for the fenvalerate treated sample. Twenty-three days and 84 days after spray application, permethrin residues were 4.0 ppm and 2.7 ppm for the cis-isomer, whereas they were 7.9 ppm and 4.7 ppm for the trans-isomer, respectively. Residues of fenvalerate 23 days and 84 days after spray application were 13.4 ppm and 8.0 ppm, respectively. The values of observed half-life of cis-permethrin, trans-permethrin and fenvalerate were found to be 42 days, 46 days and 51 days, respectively. Studies were extended to quantitatively determine some of the major degradation compounds of permethrin and fenvalerate, which were expected to be produced as results of ester cleavage of the parent compounds. A permethrin treated sample, 84 days after initial spray application, showed 0.25 and 0.8 ppm of cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (C12CA (18), respectively. These two acids were not found as free acids, but found as conjugated compounds. The other expected degradation compounds, 3-phenoxybenzyl alcohol (PBalc (~)),3-phenoxybenz.aldehyde (PBald (38)) and 2- (4-chlorophenyl) isovaleric acid (CPIA (31)) were not detected by the methods employed in this study. The results indicate that these degradation compounds were not present, or, if they were present, their concentrations were too low to detect by the methods used.
Resumo:
Instead of developing easily degradable, and low-priced insecticides, we are going after highly sophisticated chemicals. Here, an attempt is being made to develop safer formulations of insecticides of botanical origin. Different parts of the plants were chosen based on their use in countryside and villages The dried plant materials were extracted with petroleum ether, and were applied on Tribolium castaneum. The results were statistically analysed. The active principles from Croton tigilium and Leea sambucina, the most potential plants, were isolated using Column Chromatography, TLC, and Hydrolysis. The isolated principles were analysed spectroscopically ( UV-Vis., IR, NMR, and MS ) to identify their chemical nature. The active principles from Leea and Croton were identified as a cholisterate derivative and a phorbol derivative respectively. In order to ascertain the environmental combatibility of the principles, degradation by soil bacteria was studied. The isolated principles were made into three type of formulations using stabilizers .The formulations were applied on Snake gourd semilooper, Pulse beetle, and mosquito larvae. Also the biocidal activity of the formulations was studied. Both Leea derivative and Croton derivative could be formulated effectively and were effective against a variety of pests. They are eco-friendly, as there is no artificial chemicals involved.
Resumo:
Cochin University of Science And Technology
Resumo:
The promotion of technologies seen to be aiding in the attainment of agricultural sustainability has been Popular amongst Northern-based development donors for many years. One of these, botanical insecticides (e.g., those based on neem, Pyrethrum and tobacco) have been a particular favorite as they are equated with being 'natural' and hence less damaging to human health and the environment. This paper describes the outcome of interactions between one non-government organisation (NGO), the Diocesan Development Services (DDS), based in Kogi State, Nigeria, and a major development donor based in Europe that led to the establishment of a programme designed to promote the Virtues of a tobacco-based insecticide to small-scale farmers. The Tobacco Insecticide Programme (TIP) began in the late 1980s and ended in 200 1, absorbing significant quantities of resource in the process. TIP began with exploratory investigations of efficacy on the DDS seed multiplication farm followed by stages of researcher-managed and farmer-managed on-farm trials. A survey in 2002 assessed adoption of the technology by farmers. While yield benefits from using the insecticide were nearly always positive and statistically significant relative to an untreated control, they were not as good as commercial insecticides. However, adoption of the tobacco insecticide by local farmers was poor. The paper discusses the reasons for poor adoption, including relative benefits in gross margin, and uses the TIP example to explore the differing power relationships that exist between donors, their field partners and farmers. (C) 2004 by The Haworth Press, Inc. All rights reserved.
Resumo:
In a field experiment the effects of Sumicidin (super) 5EC (fenitrothion), Metasystox EC25 (oxydemeton-methyl) and Tamaron SL600 (methamidophos), applied at different dosages, were evaluated against peach-potato aphid, Myzus persicae (Sulzer) and its parasitoid Aphidius matricariae Haliday on Cardinal and Desiree (respectively partially resistant and susceptible potato cultivars to M. persicae). Sumicidin (super) 5EC was found about 30% more effective in reducing aphid populations than the other insecticides tested. The highest doses of each insecticide caused maximum aphid mortality; in general aphid mortality appeared dose dependent. Almost all the higher and lower doses of the tested insecticides were about 19% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with second highest dose on Cardinal as with the highest dose on Desiree. Also the same control level was achieved at the lowest dosage rate on Cardinal compared with the next higher dose on the Desiree. Sumicidin (super) 5EC was found least toxic to the parasitoid, A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging female parasitoids; increase of about 22, 67 and 47% respectively were found in parasitoid performance with Tamaron SL600 which was found comparatively highly toxic. The highest doses of all insecticides were found clearly toxic to the parasitoid. In general, effects on the parasitoid were dose dependent. Maximum yield was obtained from the second highest dose of Sumicidin (super) 5EC.
Resumo:
Field studies were conducted in Pakistan to examine the effects and the interaction of two differentially resistant potato cultivars i.e. Cardinal and Desiree (one partially resistant and one susceptible to Myzus persicae (Sulzer), respectively) with different dosage rates of granular insecticides, at different time intervals after application in relation to percent kill of M. persicae and effects on the parasitoid Aphidius matricariae Haliday (i.e. the third trophic level) within the aphid mummies, percent parasitism and Thimet 10G (phorate) was found about 30% more effective in reducing aphid population than the Furadan 3G (carbofuran). The highest doses of each insecticide caused maximum aphid mortality, in general aphid mortality appeared dose dependent. Mostly all the higher and lower doses of the tested insecticides were about 10% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with the second highest dose on Cardinal as with the highest dose on Desiree. Also the same level of control was observed at the lowest dose on Cardinal as with the second last lowest dose on Desiree. Furadan 3G was found least toxic to the A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging females. Furadan 3G gave 13, 15 and 6% higher figures, respectively from the parasitoid characteristics than Thimet 10G. The highest doses of both insecticides were clearly toxic to the parasitoid. In general, the effects on the parasitoid were dose dependent. The second highest dose of Thimet 10G, gave the maximum yield
Resumo:
Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 muM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect oil AChE activity but a Strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.
Resumo:
This study was designed to test the feasibility of integrating in situ, single species exposures and biomarker analysis into microcosm studies. Experimental ponds were dosed with pirimiphos methyl (PM) and lindane. C. riparius fourth instar larvae were deployed for 48 h on nine separate occasions during the study period before and after treatment. Surviving larvae were analysed for acetylcholinesterase activity (AChE). Survival and biomarker data were compared to chironomid assemblage analysis by monitoring insects emerging from the microcosms. Survival of chironomids within the in situ systems commenced on day + 16 after treatment with 31.6% and 53.3% survival in the lindane and PM treated ponds, respectively. In contrast, the first emergence from the microcosms occurred on days + 27, in respect to lindane, and + 59 for the PM treated ponds. Thus the in situ bioassay was able to demonstrate gradual reduction in toxicity within the sediment before this was evident from macroinvertebrate monitoring. Significant ACNE inhibition was only detected on exposure to PM. Levels decreased from 75% on day + 16 to 26% by day +29. The biomarker analysis confirmed that, by the end of the study, the insecticide was no longer exerting an effect. We discuss how the use of in situ bioassays could also aid comparison of microcosm studies by adding a standardized dimension. (C) 2003 Elsevier Ltd. All rights reserved.