989 resultados para PHASE-SPACE
Resumo:
The space of labels characterizing the elements of Schwinger's basis for unitary quantum operators is endowed with a structure of symplectic type. This structure is embodied in a certain algebraic cocycle, whose main features are inherited by the symplectic form of classical phase space. In consequence, the label space may be taken as the quantum phase space: It plays, in the quantum case, the same role played by phase space in classical mechanics, some differences coming inevitably from its nonlinear character. © 1990 American Institute of Physics.
Resumo:
We show how mapping techniques inherent to N2-dimensional discrete phase spaces can be used to treat a wide family of spin systems which exhibits squeezing and entanglement effects. This algebraic framework is then applied to the modified Lipkin-Meshkov-Glick (LMG) model in order to obtain the time evolution of certain special parameters related to the Robertson- Schrödinger (RS) uncertainty principle and some particular proposals of entanglement measure based on collective angular-momentum generators. Our results reinforce the connection between both the squeezing and entanglement effects, as well as allow to investigate the basic role of spin correlations through the discrete representatives of quasiprobability distribution functions. Entropy functionals are also discussed in this context. The main sequence correlations → entanglement → squeezing of quantum effects embraces a new set of insights and interpretations in this framework, which represents an effective gain for future researches in different spin systems. © 2013 World Scientific Publishing Company.
Resumo:
A rescale of the phase space for a family of two-dimensional, nonlinear Hamiltonian mappings was made by using the location of the first invariant Kolmogorov-Arnold-Moser (KAM) curve. Average properties of the phase space are shown to be scaling invariant and with different scaling times. Specific values of the control parameters are used to recover the Kepler map and the mapping that describes a particle in a wave packet for the relativistic motion. The phase space observed shows a large chaotic sea surrounding periodic islands and limited by a set of invariant KAM curves whose position of the first of them depends on the control parameters. The transition from local to global chaos is used to estimate the position of the first invariant KAM curve, leading us to confirm that the chaotic sea is scaling invariant. The different scaling times are shown to be dependent on the initial conditions. The universality classes for the Kepler map and mappings with diverging angles in the limit of vanishing action are defined. © 2013 Published by Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that the parametrized Wave-Packet Phase Space representation, which has been studied earlier by one of the authors, is equivalent to a Squeezed States Phase Space Representation of quantum mechanics. © 1988.
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
Dynamical properties for a beam light inside a sinusoidally corrugated waveguide are discussed in this paper. The beam is confined inside two-mirrors: one is flat and the other one is sinusoidally corrugated. The evolution of the system is described by the use of a two-dimensional and nonlinear mapping. The phase space of the system is of mixed type therefore exhibiting a large chaotic sea, periodic islands and invariant KAM curves. A careful discussion of the numerical method to solve the transcendental equations of the mapping is given. We characterize the probability of observing successive reflections of the light by the corrugated mirror and show that it is scaling invariant with respect to the amplitude of the corrugation. Average properties of the chaotic sea are also described by the use of scaling arguments.
A Phase Space Box-counting based Method for Arrhythmia Prediction from Electrocardiogram Time Series
Resumo:
Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.
Resumo:
A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.
Resumo:
Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains
Resumo:
The study of temperature gradients in cold stores and containers is a critical issue in the food industry for the quality assurance of products during transport, as well as forminimizing losses. The objective of this work is to develop a new methodology of data analysis based on phase space graphs of temperature and enthalpy, collected by means of multidistributed, low cost and autonomous wireless sensors and loggers. A transoceanic refrigerated transport of lemons in a reefer container ship from Montevideo (Uruguay) to Cartagena (Spain) was monitored with a network of 39 semi-passive TurboTag RFID loggers and 13 i-button loggers. Transport included intermodal transit from transoceanic to short shipping vessels and a truck trip. Data analysis is carried out using qualitative phase diagrams computed on the basis of Takens?Ruelle reconstruction of attractors. Fruit stress is quantified in terms of the phase diagram area which characterizes the cyclic behaviour of temperature. Areas within the enthalpy phase diagram computed for the short sea shipping transport were 5 times higher than those computed for the long sea shipping, with coefficients of variation above 100% for both periods. This new methodology for data analysis highlights the significant heterogeneity of thermohygrometric conditions at different locations in the container.
Resumo:
In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a “heuristic argument” that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper “side-by-side” comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (“time averages”) are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.
Resumo:
A stress phase space is proposed to compare the static packings of a granular system (microstates) that are compatible to a macrostate described by external stresses. The equivalent stress of each particle of a static packing can be obtained from the mechanical interaction forces, and the associated volume is given by the respective Voronoi cell. Therefore, particles can be located at different stress levels and grouped into categories or configurations, which are defined in base of the geometrical features of the local arrangement (in particular, of the number of forces that keep them force-balanced). They can be represented as points in a stress phase space. The nature of this space is analyzed in detail. The integration limits of the stress variables that avoid or limit tensile states and the capability of each configuration to represent specific stress states establish its main features. Furthermore, if some stress variables are used, instead of the usual components of the Cauchy stress tensor, then some symmetries can be found. Results obtained from molecular dynamics simulations are used to check this nature. Finally, some statistical ensembles are written in terms of the coordinates of this phase space. These require some assumptions that are made in base on continuum mechanics principles.
Resumo:
Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.