928 resultados para PERSISTENT CURRENTS
Resumo:
Ocean processes are complex and have high variability in both time and space. Thus, ocean scientists must collect data over long time periods to obtain a synoptic view of ocean processes and resolve their spatiotemporal variability. One way to perform these persistent observations is to utilise an autonomous vehicle that can remain on deployment for long time periods. However, such vehicles are generally underactuated and slow moving. A challenge for persistent monitoring with these vehicles is dealing with currents while executing a prescribed path or mission. Here we present a path planning method for persistent monitoring that exploits ocean currents to increase navigational accuracy and reduce energy consumption.
Resumo:
The development of chlamydial vaccines continues to be a major challenge for researchers. While acute infections are the main target of vaccine development groups, Chlamydia is well known for its ability to establish chronic or persistent infections in its host. To date, little effort has focussed specifically on the challenges of vaccines to successfully combat the chronic or persistent phase of the disease and yet this will be a necessary aspect of any fully successful chlamydial vaccine. This short review specifically examines the phenomenon of chlamydial persistence and the unique challenges that this brings to vaccine development.
Resumo:
In this paper we examine the dynamics of the link between inequality and inflation from a political economy perspective. We consider a simple dynamic general equilibrium model in which agents vote over the desired inflation rate in each period, and inequality is persistent. Inflation in our model is a mechanism of redistribution, and we find that the link between inequality and inflation within any period or over time depends on institutional and preference related parameters. Furthermore, we find that differences in the initial distributions of wealth can yield a diverse set of patterns for the evolution of the inflation and inequality link. Relative to existing literature, our model leads to more precise predictions about the inflation-inequality correlation. To that end, results in the extant empirical literature on the inflation and inequality link need to be interpreted with caution.
Resumo:
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.
Resumo:
For a mobile robot to operate autonomously in real-world environments, it must have an effective control system and a navigation system capable of providing robust localization, path planning and path execution. In this paper we describe the work investigating synergies between mapping and control systems. We have integrated development of a control system for navigating mobile robots and a robot SLAM system. The control system is hybrid in nature and tightly coupled with the SLAM system; it uses a combination of high and low level deliberative and reactive control processes to perform obstacle avoidance, exploration, global navigation and recharging, and draws upon the map learning and localization capabilities of the SLAM system. The effectiveness of this hybrid, multi-level approach was evaluated in the context of a delivery robot scenario. Over a period of two weeks the robot performed 1143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), travelled a total distance of more than 40km, and recharged autonomously a total of 23 times. In this paper we describe the combined control and SLAM system and discuss insights gained from its successful application in a real-world context.
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
In the ocean science community, researchers have begun employing novel sensor platforms as integral pieces in oceanographic data collection, which have significantly advanced the study and prediction of complex and dynamic ocean phenomena. These innovative tools are able to provide scientists with data at unprecedented spatiotemporal resolutions. This paper focuses on the newly developed Wave Glider platform from Liquid Robotics. This vehicle produces forward motion by harvesting abundant natural energy from ocean waves, and provides a persistent ocean presence for detailed ocean observation. This study is targeted at determining a kinematic model for offline planning that provides an accurate estimation of the vehicle speed for a desired heading and set of environmental parameters. Given the significant wave height, ocean surface and subsurface currents, wind speed and direction, we present the formulation of a system identification to provide the vehicle’s speed over a range of possible directions.
Resumo:
Many developing countries are plagued by persistent inequality in income distribution. While a growing body of economic-demographic literature emphasizes differential fertility channel, this paper investigates differential child mortality--differences in child mortality across income groups--as a critical link through which income inequality persists. Using an overlapping generations model in which both child mortality and fertility are endogenously determined by parental choice, this paper demonstrates that differential child mortality and its interaction with differential fertility may generate an "income inequality trap." The trap is characterized by higher child mortality and lower degree of skill formation among the poorer households. The model can also explain the behavior of aggregate fertility and mortality rates for countries at various stages of development, consonant with patterns of demographic transition. The results indicate that provision of public health that raises the productivity of private health spending may be an effective way to reduce income inequality
Resumo:
One of the major challenges in achieving long term robot autonomy is the need for a SLAM algorithm that can perform SLAM over the operational lifetime of the robot, preferably without human intervention or supervision. In this paper we present insights gained from a two week long persistent SLAM experiment, in which a Pioneer robot performed mock deliveries in a busy office environment. We used the biologically inspired visual SLAM system, RatSLAM, combined with a hybrid control architecture that selected between exploring the environment, performing deliveries, and recharging. The robot performed more than a thousand successful deliveries with only one failure (from which it recovered), travelled more than 40 km over 37 hours of active operation, and recharged autonomously 23 times. We discuss several issues arising from the success (and limitations) of this experiment and two subsequent avenues of work.
Resumo:
Establishing a persistent presence in the ocean with an AUV to observe temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we propose a strategy that utilizes ocean model predictions to increase the autonomy and control of Lagrangian or profiling floats for precisely this purpose. An A* planner is applied to a local controllability map generated from predictions of ocean currents to compute a path between prescribed waypoints that has the highest likelihood of successful execution. The control to follow the planned path is computed by use of a model predictive controller. This controller is designed to select the best depth for the vehicle to exploit ambient currents to reach the goal waypoint. Mission constraints are employed to simulate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, and show surprising results in the ability of a Lagrangian float to reach a desired location.
Resumo:
The ability of cells to adhere, spread and migrate is essential to many physiological processes, particularly in the immune system where cells must traffic to sites of inflammation and injury. By altering the levels of individual components of the VAMP3/Stx4/SNAP23 complex we show here that this SNARE complex regulates efficient macrophage adhesion, spreading and migration on fibronectin. During cell spreading this complex mediates the polarised exocytosis of VAMP3- positive recycling endosome membrane into areas of membrane expansion, where VAMP3's surface partner Q-SNARE complex Stx4/SNAP23 was found to accumulate. Lowering the levels of VAMP3 in spreading cells resulted in a more rounded cell morphology and most cells were found to be devoid of the typical ring-like podosome superstructures seen normally in spreading cells. In migrating cells lowering VAMP3 levels disrupted the polarised localisation of podosome clusters. The reduced trafficking of recycling endosome membrane to sites of cell spreading and the disorganised podosome localisation in migrating macrophages greatly reduced their ability to persistently migrate on fibronectin. Thus, this important SNARE complex facilitates macrophage adhesion, spreading, and persistent macrophage migration on fibronectin through the delivery of VAMP3-positive membrane with its cargo to expand the plasma membrane and to participate in organising adhesive podosome structures.
Resumo:
Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.