996 resultados para PEPTIDE VACCINE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The P126 protein, a parasitosphorus vacuole antigen of Plasmodium falciparum has beenshoen to induce protective immunity in Saimiri and Aotus monkeys. In the present work we investigated its immunogenicity. Our results suggest that the N-term of P126 is poorly immunogenic and antibody response against the P126 could be under a MHC restricted control in C57BL/6(H-2b) mice, which could be problematic in ternms of a use of the P126 in a vaccine program. However, we observed that a synthetic peptide, copying the 6 octapeptide repeat corresponding to the N-term of the P126, induces an antibody response to the native molecule in C57BL/6 non-responder mice. Moreover, the vaccine-P126 recombinant induced anmtibodies against the N-term of the molecule in rabbits while the unprocessed P126 did not.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic granulomatous disease manifested in the acute/subacute or chronic forms. The anergic cases of the acute/subacute form are most severe, leading to death threatening conditions. Drug treatment is required to control the disease but the response in anergic patients is generally poor. A 15-mer peptide from the major diagnostic antigen gp43, named P10, induces a T-CD4(+) helper-1 immune response in mice of different haplotypes and protects against intratracheal challenge with virulent P. brasiliensis. Presently, P10 immunization and chemotherapy were associated in an attempt to improve antifungal treatment in Balb/c mice made anergic by adding dexamethasone to the drinking water. The combined drug/peptide treatment significantly reduced the lung CFUs in infected anergic mice, largely preserved lung alveolar structure and prevented fungal dissemination to liver and spleen. Results recommend that a P10-based vaccine should be associated to chemotherapy for improved treatment of paracoccidioidomycosis aiming especially at anergic cases. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay. EXPERIMENTAL DESIGN: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis. RESULTS: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions. CONCLUSIONS: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults. METHODOLOGY AND PRINCIPAL FINDINGS: Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 microg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-gamma production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-gamma secreting CD8(+) T cell responses. Responses were only marginally boosted after the 3(rd) vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 microg was less immunogenic in comparison to 30 and 100 microg that induced similar responses. AS02A formulations with 30 microg or 100 microg PfCS102 induced about 10-folds higher antibody and IFN-gamma responses than Montanide formulations. CONCLUSIONS/SIGNIFICANCE: PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations with a dose of 30 microg formulated with AS02A appeared the most appropriate choice for such studies. TRIAL REGISTRATION: Swissmedic.ch 2002 DR 1227.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Present combination antiretroviral therapy (cART) alone does not cure HIV infection and requires lifelong drug treatment. The potential role of HIV therapeutic vaccines as part of an HIV cure is under consideration. Our aim was to assess the efficacy, safety, and immunogenicity of Vacc-4x, a peptide-based HIV-1 therapeutic vaccine targeting conserved domains on p24(Gag), in adults infected with HIV-1. METHODS: Between July, 2008, and June, 2010, we did a multinational double-blind, randomised, phase 2 study comparing Vacc-4x with placebo. Participants were adults infected with HIV-1 who were aged 18-55 years and virologically suppressed on cART (viral load <50 copies per mL) with CD4 cell counts of 400 × 10(6) cells per L or greater. The trial was done at 18 sites in Germany, Italy, Spain, the UK, and the USA. Participants were randomly assigned (2:1) to Vacc-4x or placebo. Group allocation was masked from participants and investigators. Four primary immunisations, weekly for 4 weeks, containing Vacc-4x (or placebo) were given intradermally after administration of adjuvant. Booster immunisations were given at weeks 16 and 18. At week 28, cART was interrupted for up to 24 weeks. The coprimary endpoints were cART resumption and changes in CD4 counts during treatment interruption. Analyses were by modified intention to treat: all participants who received one intervention. Furthermore, safety, viral load, and immunogenicity (as measured by ELISPOT and proliferation assays) were assessed. The 52 week follow-up period was completed in June, 2011. For the coprimary endpoints the proportion of participants who met the criteria for cART resumption was analysed with a logistic regression model with the treatment effect being assessed in a model including country as a covariate. This study is registered with ClinicalTrials.gov, number NCT00659789. FINDINGS: 174 individuals were screened; because of slow recruitment, enrolment stopped with 136 of a planned 345 participants and 93 were randomly assigned to receive Vacc-4x and 43 to receive placebo. There were no differences between the two groups for the primary efficacy endpoints in those participants who stopped cART at week 28. Of the participants who resumed cART, 30 (34%) were in the Vacc-4x group and 11 (29%) in the placebo group, and percentage changes in CD4 counts were not significant (mean treatment difference -5·71, 95% CI -13·01 to 1·59). However, a significant difference in viral load was noted for the Vacc-4x group both at week 48 (median 23 100 copies per mL Vacc-4x vs 71 800 copies per mL placebo; p=0·025) and week 52 (median 19 550 copies per mL vs 51 000 copies per mL; p=0·041). One serious adverse event, exacerbation of multiple sclerosis, was reported as possibly related to study treatment. Vacc-4x was immunogenic, inducing proliferative responses in both CD4 and CD8 T-cell populations. INTERPRETATION: The proportion of participants resuming cART before end of study and change in CD4 counts during the treatment interruption showed no benefit of vaccination. Vacc-4x was safe, well tolerated, immunogenic, seemed to contribute to a viral-load setpoint reduction after cART interruption, and might be worth consideration in future HIV-cure investigative strategies. FUNDING: Norwegian Research Council GLOBVAC Program and Bionor Pharma ASA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracoccidioidomycosis (PCM), caused by Paracoccidioides brasiliensis, is the most prevalent invasive fungal disease in South America. Systemic mycoses are the 10th most common cause of death among infectious diseases in Brazil and PCM is responsible for more than 50% of deaths due to fungal infections. PCM is typically treated with sulfonamides, amphotericin B or azoles, although complete eradication of the fungus may not occur and relapsing disease is frequently reported. A 15-mer peptide from the major diagnostic antigen gp43, named P10, can induce a strong T-CD4+ helper-1 immune response in mice. The TEPITOPE algorithm and experimental data have confirmed that most HLA-DR molecules can present P10, which suggests that P10 is a candidate antigen for a PCM vaccine. In the current work, the therapeutic efficacy of plasmid immunization with P10 and/or IL-12 inserts was tested in murine models of PCM. When given prior to or after infection with P. brasiliensis virulent Pb 18 isolate, plasmid-vaccination with P10 and/or IL-12 inserts successfully reduced the fungal burden in lungs of infected mice. In fact, intramuscular administration of a combination of plasmids expressing P10 and IL-12 given weekly for one month, followed by single injections every month for 3 months restored normal lung architecture and eradicated the fungus in mice that were infected one month prior to treatment. The data indicate that immunization with these plasmids is a powerful procedure for prevention and treatment of experimental PCM, with the perspective of being also effective in human patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Viral proteins are not naturally selected for high affinity major histocompatibility complex (MHC) binding sequences; indeed, if there is any selection, it is likely to be negative in nature. Thus, one should be able to increase viral peptide binding to MHC in the rational design of synthetic peptide vaccines. The T1 helper peptide from the HIV-1 envelope protein was made more immunogenic for inducing T cell proliferation to the native sequence by replacing a residue that exerts an adverse influence on peptide binding to an MHC class II molecule. Mice immunized with vaccine constructs combining the more potent Th helper (Th) epitope with a cytotoxic T lymphocyte (CTL) determinant developed greatly enhanced CTL responses. Use of class II MHC-congenic mice confirmed that the enhancement of CTL response was due to class II-restricted help. Thus, enhanced T cell help is key for optimal induction of CTL, and, by modification of the native immunogen to increase binding to MHC, it is possible to develop second generation vaccine constructs that enhance both Th cell activation and CTL induction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background & objectives: To develop a broad strain coverage GAS vaccine, several strategies have been investigated which included multi-epitope approaches as well as targeting the M protein conserved C-region. These approaches, however, have relied on the use of adjuvants that are toxic for human application. The development of safe and effective adjuvants for human use is a key issue in the development of effective vaccines. In this study, we investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting GAS vaccine delivery approach. Methods: An LCP-GAS construct was synthesised incorporating multiple copies of a protective peptide epitope (J8) from the conserved carboxy terminal C-repeat region of the M protein. B10.BR mice were immunized parenterally with the LCP-J8 construct, with or without conventional adjuvant, prior to the assessment of immunogenicity and the induction of serum opsonic antibodies. Results: Our data demonstrated immunogenicity of LCP-J8 when coadministered in complete Freund's adjuvant (CFA), or administered in the absence of conventional adjuvant. In both cases, immunization led to the induction of high-titre J8 peptide-specific serum IgG antibody responses, and the induction of heterologous opsonic antibodies that did not cross-react with human heart tissue proteins. Interpretation & conclusion: These data indicated the potential of a novel self-adjuvanting LCP vaccine delivery system incorporating a synthetic GAS M protein C-region peptide immunogen in the induction of broadly protective immune responses, and pointed to the potential application of this system in human vaccine development against infectious diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have developed a highly pure, self-adjuvanting, triepitopic Group A Streptococcal vaccine based on the lipid core peptide system, a vaccine delivery system incorporating lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity. Vaccine synthesis was performed using native chemical ligation. Due to the attachment of a highly lipophilic adjuvant, addition of 1% (w/v) sodium dodecyl sulfate was necessary to enhance peptide solubility in order to enable ligation. The vaccine was synthesized in three steps to yield a highly pure product (97.7% purity) with an excellent overall yield. Subcutaneous immunization of B10. BR (H-2(k)) mice with the synthesized vaccine, with or without the addition of complete Freund's adjuvant, elicited high serum IgG antibody titers against each of the incorporated peptide epitopes.