980 resultados para PCR AMPLIFICATION
Resumo:
A technique based on the polymerase chain reaction (PCR) for the specific detection of Phytophthora medicaginis was developed using nucleotide sequence information of the ribosomal DNA (rDNA) regions. The complete IGS 2 region between the 5 S gene of one rDNA repeat and the small subunit of the adjacent repeat was sequenced for P. medicaginis and related species. The entire nucleotide sequence length of the IGS 2 of P. medicaginis was 3566 bp. A pair of oligonucleotide primers (PPED04 and PPED05), which allowed amplification of a specific fragment (364 bp) within the IGS 2 of P. medicaginis using the PCR, was designed. Specific amplification of this fragment from P. medicaginis was highly sensitive, detecting template DNA as low as 4 ng and in a host-pathogen DNA ratio of 1000000:1. Specific PCR amplification using PPED04 and PPED05 was successful in detecting P. medicaginis in lucerne stems infected under glasshouse conditions and field infected lucerne roots. The procedures developed in this work have application to improved identification and detection of a wide range of Phytophthora spp. in plants and soil.
Resumo:
PCR-based cancer diagnosis requires detection of rare mutations in k-ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work factor IX suggests that this assumption is invalid for one case of near-sequence identity To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify, wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For kras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerases. Mutant and wild-type segments of the factor V cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.
Resumo:
Six Burkholderia solanacearum (formerly Pseudomonas solanacearum) genomic DNA fragments were isolated, using RAPD techniques and cloning, from the three genetically diverse strains: ACH092 (Biovar 4), ACH0158 (Biovar 2) and ACH0171 (Biovar 3) (1). One of these cloned fragments was selected because it was present constantly in all bacterial strains analysed. The remaining five clones were selected because Southern hybridisation revealed that each showed partial or complete specificity towards the strain of origin. A seventh genomic fragment showing a strain-specific distribution in Southern hybridisations was obtained by differential restriction, hybridisation and cloning of genomic DNA. Each of these clones was sequenced and primers to amplify the insert were designed. When DNA from the strain of origin was used as template, PCR amplification for each of these fragments yielded a single band on gel analysis. One pair of primers amplified the species-constant fragment of 281 bp from DNA of all B. solanacearum strains investigated, from DNA of the closely related bacterium which causes ''blood disease'' of banana (BDB) and in P. syzigii. The sensitivity of detection of B. solanacearum using these ubiquitous primers was between 1.3 and 20 bacterial cells. The feasibility and reliability of a PCR approach to detection and identification of B. solanacearum was tested in diverse strains of the bacterium in several countries and laboratories.
Resumo:
Supernatant of boiled spleen saline-suspensions of Yersinia pestis experimentally infected animals were used as template for PCR amplification without DNA extraction. PCR sensitivity was enhanced by a second round of amplification (Nested). No amplification was observed from non-infected animals.
Resumo:
We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination
Resumo:
The method used by YAGYU et al. for the subtype-specific polymerase chain reaction (PCR) amplification of the gp41 transmembrane region of the human immunodeficiency virus type-1 (HIV-1) env gene, was tested. HIV-1 proviral DNA from 100 infected individuals in Itajaí, South Brazil was used to analyze this method. Seventy individuals were determined according to this method as having PCR products at the expected size for subtypes B, C, D and F. Of these individuals, 26 (37.1%) were observed as having the expected amplification for subtype C, and 42 (60%) were observed as having the expected products for subtypes B and D. Of the subtype B and D amplicons, 16 (22.9%) were classified as subtype D, and 26 (37.1%) were classified as subtype B. Two individuals (2.9%) had amplicons that were observed after subtype F-specific amplification was performed. Sequencing and comparing the patient sequences to reference sequences confirmed the classification of sequences of subtypes C and B. However, sequences that were falsely determined as being D and F in the PCR assay were determined as being subtypes C and B, respectively, by sequence analysis. For those individuals from whom no amplified products were obtained, a low viral load that was indicated in their patient history may explain the difficulty in subtyping by PCR methods. This issue was demonstrated by the results of ANOVA when testing the effect of viral load on the success of PCR amplification. The alignment of the obtained sequences with HIV-1 reference sequences demonstrated that there is high intra-subtype diversity. This indicates that the subtype-specific primer binding sites were not conserved or representative of the subtypes that are observed in the Brazilian populations, and that they did not allow the correct classification of HIV-1 subtypes. Therefore, the proposed method by YAGYU et al. is not applicable for the classification of Brazilian HIV-1 subtypes.
Resumo:
SUMMARYThis study evaluated the applicability of kDNA-PCR as a prospective routine diagnosis method for American tegumentary leishmaniasis (ATL) in patients from the Instituto de Infectologia Emílio Ribas (IIER), a reference center for infectious diseases in São Paulo - SP, Brazil. The kDNA-PCR method detected Leishmania DNA in 87.5% (112/128) of the clinically suspected ATL patients, while the traditional methods demonstrated the following percentages of positivity: 62.8% (49/78) for the Montenegro skin test, 61.8% (47/76) for direct investigation, and 19.3% (22/114) for in vitro culture. The molecular method was able to confirm the disease in samples considered negative or inconclusive by traditional laboratory methods, contributing to the final clinical diagnosis and therapy of ATL in this hospital. Thus, we strongly recommend the inclusion of kDNA-PCR amplification as an alternative diagnostic method for ATL, suggesting a new algorithm routine to be followed to help the diagnosis and treatment of ATL in IIER.
Resumo:
SUMMARYThe use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ) in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.
Resumo:
INTRODUCTION: This study aimed to confirm the identification of Enterococcus gallinarum and Enterococcus casseliflavus isolated from clinical and food samples by PCR-RFLP. METHODS: Fifty-two strains identified by conventional biochemical exams were submitted to PCR amplification and digested with HinfI. Only 20 (38.5%) of the 52 strains showed a DNA pattern expected for E. gallinarum and E. casseliflavus. RESULTS: Analysis of the results of this study showed that E. gallinarum and E. casseliflavus are occasionally erroneously identified and confirmed the potential application of 16S rDNA analysis for accurate identification of these species. CONCLUSIONS: A correct identification is important to distinguish between intrinsic and acquired vancomycin resistance.
Resumo:
The use of molecular tools to detect and type Leishmania species in humans, reservoirs or sandflies has been pursued using different approaches. The polymerase chain reaction provided sensitivity to case this task, since the use of hybridization procedures alone employing specifics probes is hampered due to the low detection limit. In this report, we describe the different molecular targets used in our laboratory, aiming at the detection and specific typing of these protozoa. Different kits based on hybridization assays and PCR amplification using kinetoplast and nuclear targets are described and the results obtained from their use are reported.
Resumo:
Biomphalaria glabrata, B. tenagophila and B. straminea are intermediate hosts of Schistosoma mansoni, in Brazil. The latter is of epidemiological importance in the northwest of Brazil and, due to morphological similarities, has been grouped with B. intermedia and B. kuhniana in a complex named B. straminea. In the current work, we have standardized the simple sequence repeat anchored polymerase chain reaction (SSR-PCR) technique, using the primers (CA)8RY and K7, to study the genetic variability of these species. The similarity level was calculated using the Dice coefficient and genetic distance using the Nei and Li coefficient. The trees were obtained by the UPGMA and neighbor-joining methods. We have observed that the most related individuals belong to the same species and locality and that individuals from different localities, but of the same species, present clear heterogeneity. The trees generated using both methods showed similar topologies. The SSR-PCR technique was shown to be very efficient in intrapopulational and intraspecific studies of the B. straminea complex snails.
Resumo:
In this study, the use of Mtp-40 and alpha antigen polymerase chain reaction (PCR) amplification fragments for the precise tuberculosis (TB) diagnosis was evaluated. One hundred and ninety two different samples were obtained from 113 patients with suspected TB. Mtp-40 and alpha antigen protein genes were amplified by the PCR technique and compared to both the "gold standard" (culture) test, as well as the clinical parameters (including a clinical record and X-ray film exam in 113 patients). Thirty-eight of the 113 patients had a presumptive clinical diagnosis of TB; 74% being detected by PCR technique, 58% by culture and 44% by direct microscopic visualization. Weconclude that it is possible to use PCR as a suitable technique for the detection of any mycobacteria by means of the alpha antigen product, or the specific infection of Mycobacterium tuberculosis by means of the mtp-40 gene. This might be a good supporting tool in difficult clinical TB diagnosis and pauci-bacillary cases.
Resumo:
Restriction fragment length polymorphism (RFLP) analysis of a PCR-amplified fragment of the 16S rRNA gene was performed on reference strains belonging to 21 different enterococcal species and on 75 Enterococcus isolates recovered from poultry meat, pasteurised milk and fresh cheese. PCR amplification generated a 275 bp fragment, which was digested with three restriction endonucleases (DdeI, HaeIII, HinfI). The strains were divided into five groups (groups A-E) on the basis of their restriction patterns. Five biochemical tests (arabinose, arginine, manitol, methyl-β-D-glucopyranoside and raffinose) were then performed in addition to RFLP analysis to narrow the identification of enterococcal strains to the species level. PCR-RFLP, in conjunction with the selected biochemical tests, allowed the precise identification of the 21 species of Enterococcus included in the present study. This proposed method is relatively simple and rapid and can be useful as an adjunct tool for accurate identification of Enterococcus.
Resumo:
The aim of this work was to establish a modified pre-diagnostic polymerase chain reaction (PCR) protocol using a single primer set that enables successful amplification of a highly conserved mammalian sequence in order to determine overall sample DNA quality for multiple mammalian species that inhabit areas endemic for leishmaniasis. The gene encoding interphotoreceptor retinoid-binding protein (IRBP), but not other conserved genes, was efficiently amplified in DNA samples from tail skin, ear skin, bone marrow, liver and spleen from all of the species tested. In tissue samples that were PCR-positive for Leishmania, we found that DNA from 100%, 55% and 22% of the samples tested resulted in a positive PCR reaction for the IRBP, beta-actin and beta-globin genes, respectively. Nucleotide sequencing of an IRBP amplicon resolved any questions regarding the taxonomical classification of a rodent, which was previously based simply on the morphological features of the animal. Therefore, PCR amplification and analysis of the IRBP amplicon are suitable for pre-diagnostically assessing DNA quality and identifying mammalian species living in areas endemic to leishmaniasis and other diseases.