967 resultados para P1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of five new non-electrophilic β-strand-templated thrombin active-site inhibitors have been determined bound to the enzyme. Four co-crystallize with hirugen and inhibitor isomorphously to produce thrombin-hirugen crystals (monoclinic, space group C2), while one co-crystallizes in the hexagonal system, space group P65. A 1,4-substituted cyclohexyl moiety is conserved at the P1 position of all the inhibitors, along with a fused hetero-bicyclic five- and six-membered ring that occupies the P2 site. Amino, amidino and aminoimidazole groups are attached to the cyclohexyl ring for recognition at the S1 specificity site, while benzylsulfonyl and diphenyl groups enhance the binding at the S3 subsite. The cyclohexyl groups at the P1 positions of three of the inhibitors appear to be in the energetically favored chair conformation, while the imidazole-substituted cyclohexyl rings are in a boat conformation. Somewhat unexpectedly, the two cyclohexyl-aminoimidazole groups bind differently in the specificity site; the unique binding of one is heretofore unreported. The other inhibitors generally mimic arginyl binding at S1. This group of inhibitors combines the nonelectrophilicity and selectivity of DAPA-like compounds and the more optimal binding features of the S1-S3 sites of thrombin for peptidic molecules, which results in highly potent (binding constants 12 nM-16 pM, one being 1.1 μM) and selective (ranging from 140 to 20 000 times more selective compared with trypsin) inhibitors of thrombin. The binding modes of these novel inhibitors are correlated with their binding constants, as is their selectivity, in order to provide further insight for the design of therapeutic antithrombotic agents that inhibit thrombin directly at the active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human GSTP1 gene has been shown, conclusively, to be polymorphic. The three main GSTP1 alleles, GSTP1*A, GSTP1*B, and GSTP1*C, encode proteins which differ in the 3-dimensional structure of their active sites and in their function in phase II metabolism of carcinogens, mutagens, and anticancer agents. Although, it is well established that GSTP1 is over expressed in many human tumors and that the levels of GSTP1 expression correlate directly with tumor resistance to chemotherapy and inversely with patient survival, the significance of the polymorphic GSTP1 gene locus on tumor response to chemotherapy remains unclear. The goal of this project was to define the role and significance of the polymorphic GSTP1 gene locus in GSTP1-based tumor drug resistance and as a determinant of patient response to chemotherapy. The hypothesis to be tested was that the polymorphic GSTP1 gene locus will confer to tumors a differential ability to metabolize cisplatin resulting in a GSTP1 genotype-based sensitivity to cisplatin. The study examined: (a) whether the different GSTP 1 alleles confer different levels of cellular protection against cisplatin-induced cytotoxicity, (b) whether the allelic GSTP1 proteins metabolize cisplatin with different efficiencies, and (c) whether the GSTP1 genotype is a determinant of tumor response to cisplatin therapy. The results demonstrate that the GSTP1 alleles differentially protect tumors against cisplatin-induced apoptosis and clonogenic cell kill in the rank order: GSTP1*C > GSTP1*B > GSTP1*A. The same rank order was observed for the kinetics of GSTP1-catalyzed cisplatin metabolism, both in cell-free and cellular systems, to the rate-limiting monoglutathionyl-platinum metabolite, which was characterized, for the first time, by mass spectral analysis. Finally, this study demonstrates that both GSTP1 genotype and the level of GSTP1 expression significantly contribute to tumor sensitivity to cisplatin treatment. Overall, the results of this project show that the polymorphic GSTP1 gene locus plays a significant role in tumor sensitivity to cisplatin treatment. Furthermore, these studies have contributed to the overall understanding of the significance of the polymorphic GSTP1 gene locus in tumor resistance to cancer chemotherapy and have provided the basis for further investigations into how this can be utilized to optimize and individualize cancer chemotherapy for cancer patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human glutathione S-transferase P1 (GSTP1) protein is an endogenous inhibitor of c-jun N-terminal kinases (JNKs) and an important phase II detoxification enzyme. ^ Recent identification of a cAMP response element (CRE) in the 5 ′-region of the human GSTP1 gene and several putative phosphorylation sites for the Ser/Thr protein kinases, including, cAMP-dependent protein kinases (PKAs), protein kinases C (PKCs), and JNKs in the GSTP1 protein raised the possibility that signaling pathways may play an important role in the transcriptional and post-translational regulation of GSTP1 gene. This study examined (a) whether the signaling pathway mediated by CAMP, via the GSTP1 CRE, is involved in the transcriptional regulation of the GSTP1 gene, (b) whether signaling pathways mediated by the Ser/Thr protein kinases (PKAs, PKCs, and JNKs) induce post-translational modification, viz. phosphorylation of the GSTP1 protein, and (c) whether such phosphorylation of the GSTP1 protein alters its functions in metabolism and in JNK signaling. ^ The first major finding in this study is the establishment of the human GSTP1 gene as a novel CAMP responsive gene in which transcription is activated via an interaction between PKA activated CRE binding protein-1 (CREB-1) and the CRE in the 5′-regulatory region. ^ The second major finding in this study is the observation that the GSTP1 protein undergoes phosphorylation and functionally activated by second messenger-activated protein kinases, PKA and PKC, in tumor cells with activated signaling pathways. Following phosphorylation by PKA or PKC, the catalytic activity of the GSTP1 protein was significantly enhanced, as indicated by a decrease in its Km (2- to 3.6-fold) and an increase in Kcat/ Km (1.6- to 2.5-fold) for glutathione. Given the frequent over-expression of GSTP1 and the aberrant PKA/PKC signaling cascade observed in tumors, these findings suggest that phosphorylation of GSTP1 may contribute to the malignant progression and drug-resistant phenotype of these tumors. ^ The third major finding in this study is that the GSTP1 protein, an inhibitor of JNKs, undergoes significant phosphorylation in tumor cells with activated JNK signaling pathway and in those under oxidative stress. Following phosphorylation by JNK, the ability of GSTP1 to inhibit JNK downstream function, i.e. c-jun phosphorylation, was significantly enhanced, suggesting a feedback mechanism of regulation of JNK-mediated cellular signaling. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis addressed in this project was that novel variants of naturally occurring human glutathione S-transferase P1 (GSTP1) can be created by random mutagenesis of the GSTP1 active site to yield polypeptides with increased enzymatic activity against electrophilic substrates. Specifically, the mutant proteins would metabolize and inactivate selected electrophiles more efficiently than wild-type GSTP1 and confer significant cytoprotection, as measured by reduced apoptosis and increased clonogenic survival. Glutathione S-transferase P1, a major electrophile metabolizing and detoxifying enzyme, is encoded by a polymorphic genetic locus. This locus contains nucleotide transitions in the region encoding the active site of the peptide that yields proteins with significant structural and functional differences. The method of Degenerate Oligonucleotide Mediated Random Mutagenesis (DOMRM) was used to generate cDNAs encoding unique GSTP1 polypeptides with mutations within electrophile binding site (H-site) while leaving the glutathione binding site unaffected. A prokaryotic expression library of the mutant GSTP1 polypeptides was created and screened for increased resistance to cisplatin. This screen resulted in the isolation of 96 clones representing 22 distinct mutant cDNA sequences. To investigate the effects of the changes in the H-site on the biological activity of GSTP1, the cDNA of wild-type GSTP1c and two of the identified mutants were stably transfected into human LNCaP-Pro5 prostate cancer cells that do not endogenously express GSTP1. Wild-type transfectants were resistant to doxorubicin-induced apoptosis and displayed increased clonogenic survival compared to vector controls. However, contrary to the hypothesis, in both assays the mutant transfectants were no more resistant to doxorubicin than the wild-type transfectants. To elucidate the mechanisms underlying GSTP1-mediated survival, an in-vitro assay was developed to determine whether active GSTP1 protein directly metabolizes doxorubicin by conjugation to reduced glutathione (GSH). Although GSH did promote the appearance of a unique doxorubicin conjugate, conjugate formation was not substantially increased by the addition of GSTP1 in a variety of reaction conditions. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the language identification (LID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. We show that techniques originally developed for LID on telephone speech (e.g., for the NIST language recognition evaluations) remain effective on the noisy RATS data, provided that careful consideration is applied when designing the training and development sets. In addition, we show significant improvements from the use of Wiener filtering, neural network based and language dependent i-vector modeling, and fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A loxP-transposon retrofitting strategy for generating large nested deletions from one end of the insert DNA in bacterial artificial chromosomes and P1 artificial chromosomes was described recently [Chatterjee, P. K. & Coren, J. S. (1997) Nucleic Acids Res. 25, 2205–2212]. In this report, we combine this procedure with direct sequencing of nested-deletion templates by using primers located in the transposon end to illustrate its value for position-specific single-nucleotide polymorphism (SNP) discovery from chosen regions of large insert clones. A simple ampicillin sensitivity screen was developed to facilitate identification and recovery of deletion clones free of transduced transposon plasmid. This directed approach requires minimal DNA sequencing, and no in vitro subclone library generation; positionally oriented SNPs are a consequence of the method. The procedure is used to discover new SNPs as well as physically map those identified from random subcloned libraries or sequence databases. The deletion templates, positioned SNPs, and markers are also used to orient large insert clones into a contig. The deletion clone can serve as a ready resource for future functional genomic studies because each carries a mammalian cell-specific antibiotic resistance gene from the transposon. Furthermore, the technique should be especially applicable to the analysis of genomes for which a full genome sequence or radiation hybrid cell lines are unavailable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The P1 partition system promotes faithful plasmid segregation during the Escherichia coli cell cycle. This system consists of two proteins, ParA and ParB, that act on a plasmid site called parS. By immunofluorescence microscopy, we observed that ParB localizes to discrete foci that are most often located close to the one-quarter and three-quarters positions of cell length. The visualization of ParB foci depended completely on the presence of parS, although their visualization was independent of the chromosomal context of parS (in P1 or the bacterial chromosome). In integration host factor-defective mutants, in which ParB binding to parS is weakened, only a fraction of the total pool of ParB had converged into foci. Taken together, these results indicate that parS recruits a pool of ParB into foci and that the resulting ParB–parS complexes serve as substrates for the segregation reaction. In the absence of ParA, the position of ParB foci in cells is perturbed, indicating that at least one of the roles of ParA is to direct ParB–parS complexes to the proper one-quarter positions from a cell pole. Finally, inhibition of cell division did not inhibit localization of ParB foci in cells, indicating that the positioning signals in the E. coli host that are needed for P1 partition do not depend on early division events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+ bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C-->G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.