984 resultados para Oxidative stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to evaluate the oxidative stability of soybean oil added by Lentinus edodes and Agaricus blezei extracts in accelerated storage test. Design/methodology/approach: The following treatments were subjected to accelerated storage test in an oven at 60°C for 15 days: Control (soybean oil without antioxidants), TBHQ (soybean oil + 100 mg/kg of TBHQ), BHT (soybean oil + 100 mg/kg of BHT), L. edodes (soybean oil + 3,500 mg/kg of L. edodes extract) and A. blazei (soybean oil + 3,500 mg/kg of A. blazei extract). The samples were taken every three days and analyzed for peroxide values and conjugated dienes. Findings: At the end of 15 days, the treatments TBHQ, A. blazei, L. edodes, Control and BHT showed 6.47, 8.81, 41.53, 71.28 and 78.40 meq/kg, respectively, for peroxide values and 0.37, 0.40, 0.67, 1.07 and 1.00 per cent, respectively, for conjugated dienes. Originality/value: The research indicates that mushrooms may be a promising source of natural antioxidants. Therefore, natural extracts of mushrooms can be applied to vegetable oils as a way to reduce the degradation caused by lipid oxidation. © Emerald Group Publishing Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plant extracts have b een used as an alternative to the use of synthetic antioxidants in order to preserve oils fromoxidative degradation. Additionally, these extracts add special flavors and aromas to the food. Thus, the objective of this studywas to evaluate the effect of hydroethanolic extracts of fresh and freeze-dried rosemar y in the oxidative stability of soybean oilunder accelerated storage in an oven. Results: The application of the extracts in the oil showed that that freeze-dried extract was better in reducing the formation ofoxidation products, showing 8.6 meq kg−1of peroxides after 20 days of storage. On the other hand, the mixture of the naturalextract with t-butylhydroquinone conferred better oxidative stability index until the 20th day, 9.7 h. Both extracts prevented theloss of tocopherol, not d iffering between each other (P > 0.05), and present approximately 505 mg kg−1of residual tocopherols.The sensory evaluation revealed that consumers accepted equally the oils added and not added of the rosemary extracts. Conclusion: The extracts are therefore potential sources of natural antioxidants and they would be well accepted by consumersif applied by the food industry to replace synthetic antioxidants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Spanish region of Campos de Hellin (Albacete) is characterized by a wide range of olive varieties (Arbequina, Benizal, Cornicabra, Cuquillo, Injerta, Manzanilla Local, Manzanilla de Sevilla, Negrilla, Picual), which provides different physicochemical and sensory characteristics to the oils. Thus, the knowledge of these characteristics may help develop more balanced oils. Monovarietal virgin olive oils from the different varieties grown in this area were characterized from the physicochemical and sensory points of view during four consecutive years. Clear differences among the varieties were found when principal component analysis was applied to the data from the studied parameters. The varieties were grouped according to their oleic and linoleic acid content, oxidative stability, and campesterol and total sterols content. The differences were significant with a 95% confidence level. The variety effect on the oil characteristics was stronger than the effect of the crop year. Practical applications: Chemical and sensory characteristics of monovarietal virgin olive oils play an important role in the elaboration of blends. In olive-growing regions where there is more than one variety cultivated, the characterization of monovarietal oils could increase the value of the olive oil produced due to the development of more balanced oils tailored to the preferences of consumers. This work shows that the chemical and sensory differences between varieties make possible the elaboration of a new range of virgin olive oils. This could encourage the development and marketing of quality oils, and thus increase the competitiveness of the mills in the oil market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of lipid oxidation in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Beef and pork meat in this study were analysed. In actual fact, lipid oxidation is a major deterioration reaction in meat, meat products and results in adverse changes in the colour, flavour, texture of meat and develops different compounds which should be a risk to human health as oxysterols. On beef and pork meat, a study of lipid fraction during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and sterols content, in according to the interest that has been growing around functional food in the last years. The last part of this research was focused on the study of lipid oxidation in emulsions. In oil-in-water emulsions antioxidant activity of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was evaluated. The rates of lipid oxidation of 1.0% stripped soybean oil-in-water emulsions with DOPC were followed by monitoring lipid hydroperoxide and hexanal as indicators of primary and secondary oxidation products and the droplet surface charge or zeta potential (ζ) of the emulsions with varying concentrations of DOPC were tested. This manuscript reports the main results obtained in the three activities briefly summarized as follows: 1. study on effects of feeding composition on the photoxidative stability of lipids from beef meat, evaluated during storage under commercial retail conditions; 2. evaluation of effects of diets and storage conditions on the oxidative stability of pork meat lipids; 3. study on oxidative behavior of DOPC in stripped soybean oil-in-water emulsions stabilized by nonionic surfactant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays it is requested more investigations on alternative rearing systems that are able to improve poultry welfare and to warrant high-quality and safe meat products. This thesis work was focused on the evaluation of the oxidative stability of poultry meats, obtained with different rearing systems, diets (supplemented with bioactive compounds), and packaging conditions. The thesis work was divided into the following parts: - Evaluation of the effects of different rearing systems on the quality, fatty acid composition and oxidative stability of poultry thigh and breast meat belonging to different product categories (“rotisserie” and “cut-up” carcasses); - Evaluation of the effects of different rearing systems and packaging conditions on the shelf-life of poultry thigh meat stored at 4°C for 14 days, and the effects of feed supplementation with thymol (control diet and diet with 2 different concentration of thymol) and packaging conditions on lipid oxidation of poultry thigh meat shelf-life (stored at 4°C for 14 days). The oxidative stability of poultry meat was studied by means of the spectrophotometric determinations of peroxide value and thiobarbituric acid reactive substances. - Evaluation of anti-inflammatory effects of different flavonoids (thymol, luteolin, tangeretin, sulforaphane, polymethoxyflavones, curcumin derivates) to detect their biological activity in LPS-stimulated RAW 264.7 macrophage cells in vitro, in order to study more in depth their action mechanisms. It was evaluated the cell vitality (MTT assay), nitrite concentration and protein profile. The study was focused on the identification of potential dietary bioactive compounds in order to investigate their biological activity and possible synergic effects, and to develop new suitable strategies for long-term promotion of human health, in particular against cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minor components are of particular interest due to their antioxidant and biological properties. Various classes of lipophilic minor components (plant sterols (PS) and α-tocopherol) were selected as they are widely used in the food industry. A Fast GC-MS method for PS analysis in functional dairy products was set up. The analytical performance and significant reduction of the analysis time and consumables, demonstrated that Fast GC-MS could be suitable for the PS analysis in functional dairy products. Due to their chemical structure, PS can undergo oxidation, which could be greatly impacted by matrix nature/composition and thermal treatments. The oxidative stability of PS during microwave heating was evaluated. Two different model systems (PS alone and in combination) were heated up to 30 min at 1000 W. PS degraded faster when they were alone than in presence of TAG. The extent of PS degradation depends on both heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. Many minor lipid components are included in emulsion systems and can affect the rate of lipid oxidation. The oxidative stability of oil-in-water (O/W) emulsions containing PS esters, ω-3 FA and phenolic compounds, were evaluated after a 14-day storage at room temperature. Due to their surface active character, PS could be particularly prone to oxidation when they are incorporated in emulsions, as they are more exposed to water-soluble prooxidants. Finally, some minor lipophilic components may increase oxidative stability of food systems due to their antioxidant activity. á-tocopherol partitioning and antioxidant activity was determined in the presence of excess SDS in stripped soybean O/W emulsions. Results showed that surfactant micelles could play a key role as an antioxidant carrier, by potentially increasing the accessibility of hydrophobic antioxidant to the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen an influx of speciality plant seed oils arriving into the market place. The need to characterise these oils has become an important aspect of the oil industry. The characterisation of the oils allows for the physical and chemical properties of the oil to be determined. Speciality oils were characterised based on their lipid and fatty acid profiles and categorised as monounsaturated rich (oleic acid as the major acyl components e.g. Moringa and Marula oil), linoleic acid rich (Grape seed and Evening Primrose oil) or linolenic acid rich (Flaxseed and Kiwi oil). The quality of the oils was evaluated by determining the free fatty acid content, the peroxide value (that measures initial oxidation) and p-anisidine values (that determines secondary oxidation products containing the carbonyl function). A reference database was constructed for the oils in order to compare batches of oils for their overall quality including oxidative stability. For some of the speciality oils, the stereochemistry of the triacylglycerols was determined. Calophyllum, Coffee, Poppy and Sea Buckthorn oils stereochemistry was determined. The oils were enriched with saturated and/or a monounsaturated fatty acids at position sn-1 and sn-3. The sn-2 position of the four oils was esterified with a polyunsaturated and/or a monounsaturated fatty acid indicating that they follow a typical acylation pathway and no novel acylation activity was evident from these studies (e.g enrichment of saturates at the sn-2 position). The oxidative stability of the oils was evaluated at 18oC and 60oC and the effect of adding a-tocopherol at commercially used level i.e 750ppm was assessed. The addition of 750ppm of a-tocopherol at 18oC increased the oxidative stability of Brown flax, Moringa, Wheat germ and Yangu oils. At 60oC Brown Flax, Manketti and Pomegranate oil polymerised after 48 hours. The addition of 750ppm a-tocopherol delayed the onset of polymerisation by up to 48 hours in Brown Flax seed oil. Pomegranate oil showed a high resistance to oxidation, and was blended into other speciality oils at 1%. Pomegranate oil increased the oxidative stability of Yangu oil at 18oC. The addition of Pomegranate oil to Wheat germ oil at 60oC, decreased the peroxide content by 10%. In Manketti and Brown Flaxseed oil at elevated temperatures, Pomegranate oil delayed the onset of polymerisation. Preliminary studies of Pomegranate oil blending to Moringa and Borage oil showed it to be more effective than a-tocopherol for certain oils. The antioxidant effects observed following the addition of Pomegranate oil may be due to its conjugated linolenic acid fatty acid, punicic acid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We supplemented diets with a-tocopheryl acetate (100 mg/kg) and replaced beef tallow (BT) in feeds with increasing doses of n-6- or n-3-rich vegetable fat sources (linseed and sunflower oil), and studied the effects on the fatty acid (FA) composition, the a-tocopherol (aT) content and the oxidative stability of rabbit plasma and liver. These effects were compared with those observed in a previous study in rabbit meat. As in meat, the content of saturated, monounsaturated and trans FA in plasma and liver mainly reflected feed FA profile, except stearic acid in liver, which increased as feeds contained higher doses of vegetable fat, which could be related to an inhibition of the activity of the stearoyl-CoA-desaturase. As linseed oil increased in feeds, the n-6/n-3 FA ratio was decreased in plasma and liver as a result of the incorporation of FA from diets and also, due to the different performance and selectivity of desaturase enzymes. However, an increase in the dose of vegetable fat in feeds led to a significant reduction in the aT content of plasma and liver, which was greater when the fat source was linseed oil. Increasing the dose of vegetable fat in feeds also led to an increase in the susceptibility to oxidation (lipid hydroperoxide (LHP) value) of rabbit plasma, liver and meat and on the thiobarbituric acid (TBA) values of meat. Although the dietary supplementation with a-tocopheryl acetate increased the aT content in plasma and liver, it did not modify significantly their TBA or LHP values. In meat however, both TBA and LHP values were reduced by the dietary supplementation with a-tocopheryl acetate. The plasma aT content reflected the aT content in tissues, and correlated negatively with tissue oxidability. From the studied diets, those containing 1.5% linseed oil plus 1.5% BT and 100 mg of a-tocopheryl acetate/kg most improved the FA composition and the oxidative stability of rabbit tissues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of microwave heating on the oxidative stability of refined canola, corn and soybean oils were determined by absorptivity in the UV spectrum and by chemical analysis (peroxide and acid values). Samples were heated in a microwave oven (800 W, 2,450 MHz) for 0 to 36 min. Microwave heating produced oxidative degradation in the three oils. Absorptivity at 232 and 270 nm increased gradually with an increase in microwave exposure time (0-36 min) for canola, corn and soybean oils. Values of absorptivity at 232 nm increased from 4.812, 3.568 and 4.183 to 10.579, 12.874 and 15.950 after 36 min of heating canola, corn and soybean oil, respectively. The absorptivity at 232nm, due to the formation of conjugated dienes, was a good index for measuring the degradation of microwaved samples. UV scanning (220 - 320 nm) detected alterations in the spectrum of microwaved samples. Acid value also increased within 36 min of heating for all oils. Peroxide value showed a significant difference (P<0.05) in the initial stage of heating (0-6 min) for all oils. After this period it could not be correlated with absorptivity at 232 nm, due to the instability of hydroperoxides at high temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Corn oil obtained from a Brazilian industry, free from antioxidants and citric acid, added of different tertiary butylhydroquinone (TBHQ) concentrations, was submitted to accelerated oxidation in the Schaal oven test at 63°C for 120 hours and for 168 hours in a photooxidation chamber. Peroxide and absorptivity values at 232nm and 270nm were determined for this oil. From the Schaal oven test results, the best and the economical TBHQ doses were determined to this oil. Afterwards, a shelf life experiment was conducted and confirmed 115mg.kg-1 TBHQ as the best and economical dose for that oil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract This study aimed to characterize pomegranate seed oil and evaluate its quality and stability parameters against those of linseed oil. The profile of fatty acids and phytosterols and the content of tocopherols were analyzed by gas chromatography and high performance liquid chromatography, respectively. The quality of both oils was assessed as recommended by the American Oil Chemists' Society (AOCS) and stability was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching (coupled oxidation of β-carotene/linoleic acid) and Rancimat® assays. While α-linolenic acid (52%) was the most abundant fatty acid in linseed oil (LO), punicic acid (55%) was highest in pomegranate seed oil (PSO). Tocopherols and phytosterols (175 and 539 mg/100 g, respectively) were greater in PSO than in LO (51 and 328 mg/100 g, respectively). Both oils met quality standards. The β-carotene bleaching and the DPPH assays showed greater oxidative stability for PSO than for LO. The Rancimat® method, on the other hand, indicated low stability for both oils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.