1000 resultados para Oxidação da água
Resumo:
Propriedades antioxidantes de algumas especiarias foram estudadas em sistemas modelos liofilizados baseados em celulose microcristalina. Como substrato oxidável foi utilizado o metil linoleato. A oxidação foi acompanhada manometricamente em amostras ajustadas para várias atividades de água. Os resultados obtidos indicam que extrato etéreo de salsa (Petroselium sativun, Hoffm) e de coentro (Coriandrum sativum L) ao nível de 8% aumentam a estabilidade do substrato lipídico. Sendo que a atuação da salsa superou a dos demais antioxidantes empregados neste estudo inclusive dos sintéticos. Idêntica reação, entretanto, não ocorreu em relação aos extratos aquosos destas mesmas especiarias, na concentração de 8%, cujos resultados no tocante à proteção do sistema contra a oxidação foram bastante inferiores. Em relação ao extrato aquoso de cebolinha os resultados podem ser considerados nulos. A redução da concentração dos extratos de coentro: etéreo e aquoso, acarretou marcante diminuição na sua potência. No tocante à água esta apresentou um efeito inibidor frente a reação de oxidação, na dependência da atividade de água empregada.
Resumo:
Amostras de óleo vegetal foram preparadas na forma de microemulsão de água em óleo (w/o) utilizando dodecil sulfato de sódio (SDS) como surfactante e um álcool como co-surfactante. As microemulsões foram caracterizadas através de medidas de viscosidade, índice de refração, condutividade elétrica, espalhamento de luz dinâmico e voltametria. Ensaios preliminares para a quantificação de analitos por análise direta foram realizados por voltametria linear e eletroforese capilar. As microemulsões de água em óleo de soja apresentaram gotículas de dimensões nanométricas e estabilidade termodinâmica dependente da temperatura, da concentração dos eletrólitos dissolvidos e da natureza do co-surfactante empregado. Por outro lado, o raio hidrodinâmico das gotículas (Rh) diminui com o aumento da temperatura. Quanto aos valores de condutividade, maiores do que os obtidos para o óleo de soja e para a água deionizada, aumentam com a temperatura, na faixa de 20 a 65 oC, e com o teor de água na microemulsão, entre 5 e 7,5 % de água. A maior estabilidade termodinâmica foi alcançada para uma microemulsão contendo 40,0 % de óleo, 43,2 % de pentanol, 10,8 % de SDS e 6,0 % de água, em massa, na razão 1:4 [SDS]:[álcool] Medidas voltamétricas com um ultramicroeletrodo de Pt em microemulsões contendo ferroceno ou ácido oléico dissolvidos evidenciaram a dependência linear das correntes limite anódica e catódica com a concentração da espécie eletroativa. Já a oxidação do ferroceno por voltametria cíclica, usando o mesmo ultramicroeletrodo, mostrou que a diminuição dos coeficientes de difusão nestes meios permite realizar medidas em estado transiente, empregando velocidades convencionais de varredura em potencial. Experimentos por cromatografia eletrocinética em microemulsão reversa (RMEEKC) com n-pentanol como fase contínua permitiram a separação de solutos neutros e aniônicos em amostras de óleo vegetal e gordura animal. Finalmente, foi desenvolvido um procedimento rápido para a separação e identificação dos biofenóis presentes em óleos, utilizando como eletrólito de corrida uma mistura de metanol e 1-propanol contendo KOH. Os resultados evidenciam a possibilidade de análise direta de óleos vegetais empregando métodos eletroanalíticos em microemulsões w/o, e métodos por eletroforese capilar, quer em microemulsões, quer em meio não aquoso.
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
The treatment of colored and alkaline effluent has been a challenge to the textile industry. An alternative to remove the colors of those effluents is applying magnesium chloride as a coagulant agent. The magnesium ion, in high pH, hydrolyzes itself, forming the magnesium hydroxide which has a large adsorptive area and positive electrostatic charges able to act as an efficient coagulant. The bittern wastewater from the salt industries has been studied as a potential font of this magnesium ion. Nowadays, this bittern wastewater is evicted into the sea, without any treatment or other use. This thesis has evaluated the potential of applying the wastewater from the salt industries in the treatment of dyeing effluent containing indigo dye and alkaline pH. All the experiments were made in jar tests simulating the chemical coagulation, flocculation and decantation steps ranging the pH and the concentration of magnesium ion. Were obtained removals between 96% and 76% for turbidity, apparent color, and true color, respectively, using 200mg/L Mg2+. The reduction of costs with acid, when were used the salt industries wastewater, comparing with Al2(SO4)3, was 62%. For the degradation of organic matter remaining in the clarified, around 900 mg/L, was applyed the advanced process of oxidation: photo-Fenton. The preliminary results showed 57% reduction in DOC. According to the results obtained, the salt industries wastewater can be applied, as coagulant, in the physical-chemical treatment of the denim dyeing wastewater, so it is not necessary a previous adjust of pH, efficiently and economically
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
Many pollutants dumped in waterways, such as dyes and pesticides, have become so ubiquitous that they represent a serious threat to human health. The electrochemical oxidation is presented as an alternative clean, efficient and economic degradation of wastewater containing organic compounds and a number of advantages of this technique is to just not make use of chemical reagents, since only electrical energy is consumed during the removal of pollutants organic. However, despite being a promising alternative, still needs some tweaking in order to obtain better efficiency in the elimination of persistent pollutants. Thus, this study sought a relationship between a recently discovered phenomenon that reflects the participation of dissolved oxygen in solution in the electrochemical oxidation process, as an anomaly, present a kinetic model that shows instantaneous current efficiency (ICE) above 100% limited by theory, manifested for some experiments with phenolic compounds with H2SO4 or HClO4 as supporting electrolyte with electrodes under anodic oxidation on boron doped diamond (BDD). Therefore it was necessary to reproduce the data ICE exposes the fault model, and thus the 2-naphthol was used as phenolic compound to be oxidised at concentrations of 9, 12 and 15 mmol L-1, and H2SO4 and HClO4 to 1 mol L-1 as a supporting electrolyte under a current density of 30 mA cm-2 in an electrochemical reactor for continuous flow disk configuration, and equipped with anodes DDB at room temperature (25 oC). Experiments were performed using N2 like as purge gas for eliminate oxygen dissolved in solution so that its influence in the system was studied. After exposure of the anomaly of the ICE model and investigation of its relationship with dissolved O2, the data could be treated, making it possible for confirmation. But not only that, the data obtained from eletranálise and spectroscopic analysis suggest the involvement of other strongly oxidizing species (O3 (ozone) and O radicals and O2 -), since the dissolved O2 can be consumed during the formation of new strong oxidizing species, not considered until now, something that needs to be investigated by more accurate methods that we may know a little more of this system. Currently the performance of the electrocatalytic process is established by a complex interaction between different parameters that can be optimized, so it is necessary to the implementation of theoretical models, which are the conceptual lens with which researchers see
Resumo:
This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves
Resumo:
Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A filtração em múltiplas etapas (FiME) se apresenta como uma alternativa para realizar o tratamento de água de comunidades de pequeno porte, entretanto, a eficiência quanto à remoção de cor verdadeira associada ao carbono orgânico dissolvido (COD) ou às substâncias húmicas, tem sido questionada ou relatada como baixa. A presente pesquisa avaliou a remoção de substâncias húmicas na FiME com pré-oxidação, com ozônio e peróxido de hidrogênio, utilizando para essa avaliação parâmetros indiretos como cor verdadeira, absorvância UV (254 nm) e COD. Foram realizados cinco ensaios, utilizando quatro filtros lentos, sendo dois com camada de carvão ativado granular (CAG). Foram ensaiadas várias alternativas de pré-oxidação com ozônio e peróxido de hidrogênio. Foram obtidos bons resultados, tendo como principal conclusão que os filtros lentos com CAG, precedidos de oxidação com ozônio e depois peróxido de hidrogênio, apresentaram remoção média de cor verdadeira de 64%, mas que o peróxido de hidrogênio afeta o desenvolvimento da camada biológica, interferindo no desenvolvimento da perda de carga, na remoção de turbidez, na remoção de coliformes e na remoção de substâncias húmicas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)